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Shear thinning—a reduction in suspension viscosity with increasing shear rates—is understood to arise
in colloidal systems from a decrease in the relative contribution of entropic forces. The shear-thinning
phenomenon has also been often reported in experiments with noncolloidal systems at high volume
fractions. However its origin is an open theoretical question and the behavior is difficult to reproduce in
numerical simulations where shear thickening is typically observed instead. In this letter we propose a non-
Newtonian model of interparticle lubrication forces to explain shear thinning in noncolloidal suspensions.
We show that hidden shear-thinning effects of the suspending medium, which occur at shear rates orders of
magnitude larger than the range investigated experimentally, lead to significant shear thinning of the overall
suspension at much smaller shear rates. At high particle volume fractions the local shear rates experienced
by the fluid situated in the narrow gaps between particles are much larger than the averaged shear rate of the
whole suspension. This allows the suspending medium to probe its high-shear non-Newtonian regime and
it means that the matrix fluid rheology must be considered over a wide range of shear rates.
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Predicting the rheology of particles suspended in simple
and complex fluids represents a formidable problem both
from a theoretical point of view and also in practical
industrial applications [1,2]. Rheological analysis is con-
ventionally done via experiments aimed at the measure-
ment of viscosity and normal stresses under controlled
viscometric conditions. A monodispersed suspension of
solid spheres in a Newtonian medium represents an ideal
case of study. However, despite its apparent simplicity, it is
remarkable that even this system is still far from being
understood. In the case of colloidal suspensions, where
Brownian motion is relevant, accurate predictions of the
suspension rheology exist, and shear thinning is observed
as result of a decreasing relative contribution of entropic
forces at large shear rates [2].
In the noncolloidal limit, however, significant disagree-

ment between simulation, theory, and experiment still exists.
Simulations have been very successful in reproducing the
shear-thickening behavior, both in its “continuous” and
“discontinuous” manifestation. For example, Stokesian
dynamics simulations of particles interacting via hydro-
dynamic lubrication have shown that mild continuous shear
thickening can be related to the presence of large fluctuations
in the particle density, termed “hydroclusters,” occurring at
large shear rates [3–5]. In the thin gaps between particles
inside hydroclusters, diverging lubrication forces are active
which in turn induce larger stresses in the system, leading to
shear thickening [6]. For ideal non-Brownian hard-sphere
suspensions thickening might be associated with the pres-
ence of surface roughness and also finite particle inertia [7,8]
which can all lead to anisotropic microstructure and

shear-rate dependent rheological properties. More recently,
also discontinuous shear thickening [9–11] has been suc-
cessfully reproduced by proposing new granularlike models
where additional frictional forces are acting between par-
ticles [12–16]. Frictional contact dynamics is expected to
dominate especially at large volume fractions, close to
jamming transition, and is responsible for the sudden
(discontinuous) jump in the viscosity. Recently in [17] the
authors showed that frictional contact might represent the
relevant contribution even in continuous shear thickening,
although as shown in [18] confinement can play an enhance-
ment role too based on pure lubrication dynamics.
A striking rheological phenomenon, however, is

observed in noncolloidal suspensions where, well before
the onset of shear thickening, shear-thinning behavior has
been often reported in experiments [19–22]. In these
experiments particles with radii larger than 20 μm were
typically used, reaching Péclet numbers in excess of 107 for
which Brownian effects are practically negligible [21].
Effects due to confinement [19], particle migration, and or
sedimentation were ruled out in [19,21]. Despite this
phenomenon having been known for a long time [23–
25], neither simulation nor theory is capable of predicting it
and offering a plausible physical explanation [26,27].
Recently in [28] it was proposed that particle aggregation

might take place during steady shear, relating the shear
thinning to a decreasing size of these structures at increas-
ing shear rate. Although being a possible mechanism, it
does not explain the mismatch between experiments and
theory as this hydrodynamic phenomenon has never been
predicted in simulations to date.
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Another possibility to explain the shear thinning relates
to the argument of Wyart and Cates [9], where interparticle
friction is included. If the friction diminishes with shear
rate then one would expect shear thinning to occur. This
possible effect, however, requires the development of new
models for frictional contacts being the current ones
delivering opposite shear-thickening behavior [13] and,
if present, it would be likely to take place at larger volume
fractions. Here we will not consider this possibility, and
will concentrate on the properties of the matrix.
The non-Newtonian properties of the suspending matrix

were considered not relevant in [21]. In that work a Dow
Corning silicone fluid was used as suspending medium
with negligible shear thinning (less than 10%) in a range of
applied input shear rates _γin ∈ ½0.01∶100� s−1. In [19,28]
the same suspension phenomenology was reported with
different suspending fluids, e.g., pure corn syrup, water-
glycerin mixture, corn syrup–glycerine mixture, and Shin-
Etsu silicone oil. In all cases suspending fluid rheology was
reported to be nominally Newtonian within the range of
shear rates investigated.
In this Letter, we focus on the “ansatz” of Newtonian

property and show that even small hidden non-Newtonian
effects of the suspending matrix, i.e., those occurring at
high shear rates (well above the range probed in the
experiments), can produce significant shear thinning of
the suspension in the low shear-rate regime under study.
Questioning of the Newtonian properties of the suspending
media is motivated by the established literature on Dow
Corning silicon fluids [29]. Constant Newtonian viscosity
is guaranteed by the manufacturer only up to shear rates in
the order of 1000 s−1 for the polydimethylsiloxane-based
(PDMS) fluid at low-molecular weights (e.g., zero shear-
rate viscosity η0 ≈ 1 Pa s), as used in [21]. On the other
hand, PDMS liquids could shear thin significantly for shear
rates above that value [30,31]. Note that the critical shear
rate for possible onset of shear-thinning effects is just one
order of magnitude larger than the maximum averaged
shear rate probed in parallel-plate rheometers used in [21].
At larger shear rates, the fracture of the sample was
observed.
Here we modify the suspension model presented in [32]

for noncolloidal suspensions. The numerical method used
is smoothed particle hydrodynamics (SPH), which is a
Lagrangian meshless particle method to describe Navier-
Stokes equations. The model can be also extended to
incorporate thermal fluctuations and describe Brownian
conditions [33]. Whereas long-range hydrodynamic inter-
actions between suspended particles are correctly repre-
sented by SPH-mediated forces, short-range pairwise
lubrication forces are incorporated directly and solved
efficiently by a novel implicit splitting strategy [32,34].
A snapshot of the particle configuration is depicted in
Fig. 1. This corresponds to system size Lx × Ly × Lz ¼
ð32a; 32a; 32aÞ where a is the radius of the spheres.

The resulting scheme has been used to investigate
hydrodynamic shear thickening of hard spheres under
confinement in [18] and recently extended to 3D situations
[34]. In this Letter, the classical interparticle normal and
tangential lubrication forces between two spheres sus-
pended in Newtonian fluid [34] are modified to take into
account the specific non-Newtonian behavior of the matrix.
For instance, the normal force

Flub
αβ ðsÞ ¼ −6πη0

�
aαaβ

aα þ aβ

�
2 1

s
ðVαβ · eαβÞeαβ ð1Þ

is modified, by replacing the constant η0 with a function of
the local suspending medium shear rate ηð_γÞ. In Eq. (1) eαβ
is the unit vector joining the centers of mass of two
suspended solid particles α and β, Vαβ is their relative
velocity, aα and aβ are their radii, and s is the distance in the
gap between sphere-sphere surfaces. In this Letter, we
consider a≡ aα ¼ aβ ¼ 1, whereas fluid properties are
chosen such that the particle Reynolds number
Rep ¼ ρ0a2 _γ=η0 ≪ 1. Moreover, we consider a non-
Newtonian model for the suspending fluid which reads

ηð_γÞ ¼ η0

(
1; _γ < _γc

ð _γ
_γc
Þm; _γ ≥ _γc

ð2Þ

where η0 is the constant low shear-rate solvent viscosity, m
defines the slope of high shear-rate viscosity decay, and _γc
denotes the critical shear rate for the onset of shear thinning
in the suspending fluid. Effects of changing parameters _γc
and m will be explored, however, we anticipate that values
have been chosen in the range of those encountered for
typical suspending media as silicone fluids, with
_γc ≫ _γmax

in , where _γmax
in is the maximal applied shear rate

probed in the viscometric flow between two plates, i.e.,
_γmax
in ¼ 2Vmax=H, whereH ¼ Lz (Fig. 1) is the channel gap
and Vmax the maximal plate velocity.
We should point out that this is an approximate approach

to take into account the shear-thinning effect in the
lubrication interaction. In fact, shear-thinning rheology
modifies the parabolic profile for the squeezing flow in
and out of the sphere-sphere gap, as assumed in classical
lubrication theory [35], and therefore the effective lubri-
cation force cannot be formally cast in the framework of
Eq. (1). Unfortunately, there is no exact lubrication
expression for the shear-thinning solvent model (2).
Nevertheless, we do not expect the general results to be
different for a more exact formulation. As the focus here is
rather on a proof of concept of the qualitative role of shear
thinning we expect the formula adopted in Eqs. (1) and (2)
to be sufficiently accurate for our purpose.
As in Refs. [18,34], a shear rate is applied to the sample

by moving upper and lower planar solid walls with equal
and opposite velocities �Vw to reproduce a uniform shear
flow. As an effect of the confinement, the input shear rate
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defined as _γin ¼ 2Vw=H might be slightly different to the
real shear rate effectively experienced by the suspension. In
order to take into account this effect, similarly to experi-
ments, we correct it by interpolating the linear velocity
profile in the bulk region [18], therefore eliminating
possible artifacts due to wall slip.
Finally, suspension viscosity is calculated by measuring

the force Fx acting on the plates in the flow direction x, via
ηsusp ¼ σxz=_γin ¼ Fx=LxLy _γin. Rheology of a Newtonian
suspension was investigated in [34] for the relative vis-
cosity ηrel ¼ ηsusp=η0 vs _γin and ηrel vs solid volume fraction
ϕ ¼ N4πa3=ð3VÞ (N being the total number of suspended
spheres) showing results in excellent agreement with
previous data [5,36], i.e., constant viscosity plateau under
dilute conditions and weak shear thickening in the con-
centrated regime.
We focus first on the distribution of local shear rates

within the fluid domain of a fully Newtonian fluid—η0
constant—for a typical particle distribution shown in Fig. 1
at ϕ ¼ 0.4. At this concentration local shear rates cannot be
accurately captured by a SPH interpolation of fluid par-
ticles, resolution being too coarse in the gap between
suspended solid spheres. The dynamics in this regime is
lubrication dominated and, as a consequence, local shear
rates can be estimated based on the lubrication approxi-
mation, i.e., by assuming developed squeezing flow. In
particular, for each pair of approaching or departing solid
spheres with normal relative velocity Vαβ, we estimate

_γloc ¼ 9∥Vαβ∥=ð16sÞ
ffiffiffiffiffiffiffiffiffiffi
3a=s

p
, where s is the surface-sur-

face separation. Values for _γloc are estimated for every pair
of spheres for over 200 independent configurations
obtained once the system has reached steady state. As
usual [5,18,34,37], dimensionless shear-rate values are
taken as _γ� ¼ 6η0a_γ=F0, where F0 is the constant magni-
tude of the near hard-sphere interparticle repulsion force
Frep
αβ ¼ F0τe−τs=ð1 − e−τsÞeαβ with τ−1 ¼ 0.001a deter-

mining its range [5,36].

Figure 2 shows the distribution of the ratio _γ�loc=_γ
�max
in as

a function of the dimensionless sphere-sphere separations
and for different applied dimensionless shear rates _γ�in. The
maximal input shear rate investigated here is _γ�max

in ≈ 113.
The distribution of points indicates clearly that at the
concentration considered, locally in the fluid domain shear
rates much larger than the input shear rate are present for
particles located at short distances, in agreement with
previous scaling arguments [38,39]. For small applied
shear rates (blue points), local shear rates are in the order
of _γ�in, although rare events with s < 0.01a and _γ�loc=_γ

�max
in ≈

100 are possible. This distribution stretches towards the
left-upper corner for increasing _γ�in (pink and green points).
In these cases distances s smaller than 10−3a can occur with
resulting _γ�loc=_γ

�max
in > 105.

Note that decreasing interparticle spacing is expected at
larger applied shear rates as a result of the accumulation of
particles along the compression axis of shear which produces
the well-known asymmetric radial distribution function
(RDF) [40,41]. The probability distribution function
(PDF) of _γ�loc at equilibrium for three different applied shear
rates is depicted in Fig. 2 (inset). Long tails are present for
_γ�in ≈ 54 and 113 indicating a significant probability for
events characterized by very large local shear rates. This
observation implies that, if we would consider a critical
threshold for shear-thinning rheology in the suspending fluid
[Eq. (2)] as _γ�c ¼ 10_γ�max

in —depicted as a vertical dashed line
in the figure—at large shear rates (pink and green lines) there
would be a considerable portion of events for which the very
high-shear non-Newtonian behavior of the suspending
medium would be effectively probed in the interstitial gaps
between particles.
As a proof of concept, we have moved from a full

Newtonian system to one characterized by Eq. (2), with
parameterm ¼ 0.35 kept fixed andvariable _γ�c. Figure 3 (top)

FIG. 1. Snapshot of a simulation corresponding ϕ ¼ 0.4 and
box size Lz ¼ H ¼ 32a. Total number of solid particles (gray)
wasNc ¼ 3129 and SPH fluid particles (blue) N ≈ 4.3 × 106. For
clarity, upper and lower walls have not been drawn. To rule out
finite size effects simulations were conducted up to gap size
H ¼ 64a. FIG. 2. Simulation of a suspension with Newtonian solvent of

constant viscosity η0: distribution of the local shear rates _γ�loc vs
gap length between the spheres surfaces and probability distri-
bution of _γ�loc (inset), for three different input shear rates _γ�in
(vertical dashed line indicates _γ�c ¼ 10_γ�max

in ).

PRL 117, 108001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

2 SEPTEMBER 2016

108001-3



shows the suspension rheology ηrel in the regime _γ�in ∈
½_γmin �

in ∶_γmax �
in �. The red line represents the reference

Newtonian solutionwherewell-knownmild shear thickening
is observed as a result of the anisotropic particle RDF. By
introducing a hidden high-shear power-law behavior ηrel,
drastic changes occur in the suspension rheology. Even for
_γ�c=_γ�max

in ¼ 100 the originalweak shear-thickening behavior
is turned into a slight shear-thinning behavior over one order
of magnitude in _γ�in only. By lowering the ratio _γ�c=_γ�max

in
further, i.e., bringing the onset of power-law behavior of
the suspending fluid closer to the maximal input shear rate,
the shear-thinning behavior of the suspension is visibly
enhanced.These results are in remarkable agreementwith the
phenomenology observed in experiments for noncolloidal
systems [19–22,24,25].
In Fig. 3 (bottom) we explore the effect of slope decaym

on the resulting shear thinning of the suspension for a fixed
ratio _γ�c=_γ�max

in ¼ 10. Values of m ≥ 0.1 seem to change
rheological behavior (shear thickening → shear thinning)
under the described condition. The effect of different
thickness (τ−1 ¼ 0.01a) on the suspension behavior is

presented in the Supplemental Material [42] showing a
similar trend. We should stress that typical values matching
high-shear behavior of PDMS fluids are in the order of
_γc ≈ 1000–5000 s−1 which is 10–50 times larger than the
maximal input shear rates investigated in [19,21,25], for
example. From [30,31] data, m can be estimated for low-
molecular PDMS to be in the range m ≈ 0.01–0.5, which is
consistent with the values chosen here.
Finally, we explore the effect of solid volume fraction ϕ

on the suspension rheology of this system. In practice, we
chose parameters m ¼ 0.35 and _γ�c=_γ�max

in ¼ 10 for the
suspending fluid (blue lines in Fig. 3) and vary the total
number of suspended spheres N to change ϕ ∈ ½0.2–0.45�.
All other model parameters are fixed. Figure 4 shows the
shear-thinning exponent b of the overall suspension viscosity
ηrelð_γ�inÞ at different concentrations obtained from algebraical
interpolation of the simulated data via a × ½_γ�in�b. Results are
compared with fitting of the experimental data from [21] in
the power-law regime of shear thinning, i.e., for dimensional
shear rates _γin ∈ ½0.05–40� s−1. It is clear that decreasing ϕ
has alone the effect of removing the shear thinning, bringing
the suspension rheology back to the corresponding
Newtonian case at the given concentration. This is charac-
terized by a viscous plateau—exponent b smaller than
0.08—in the semidilute regime (ϕ < 0.35) in agreement
with experiments and previous calculations. This finding can
be explained by resorting again to the particle RDF which,
under semidilute conditions, does not exhibit strong aniso-
tropic boundary layers in the compressional axis. As a result,
particles on average will never get very close to each other,
precluding the possibility for having very high local shear
rates in the system.
In this Letter we have proposed and tested numerically a

possible mechanism for explaining the puzzling shear-
thinning behavior often reported in experiments of
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FIG. 4. Power-law exponent b extracted from the suspension
viscosity ηrelð_γ�inÞ for a solvent fluid characterized by m ¼ 0.35
and _γ�c=_γ�max

in ¼ 10. Simulations are compared with exponents
extracted from experiments in the power-law regime at different
concentrations ϕ [21].
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noncolloidal suspensions. A non-Newtonian model of
interparticle lubrication forces, in combination with the
natural highly anisotropic behavior of particle configura-
tion (RDF) present in concentrated systems under shear,
allows us to predict experimental observations. The com-
plex microstructural configuration allows us to probe
shear-rate regimes of the suspending fluid which would
be otherwise hidden when testing its rheology only in a
limited (low) range of shear rates. The interplay of this
condition with the shear-thinning effects at high shear rates,
which are known to appear even in PDMS fluids at low-
molecular weight, can finally deliver the observed overall
shear thinning of the suspensions. This result suggests also
a route to test our assumptions by characterizing the
rheological behavior of the suspending media in the very
high shear rate regime, e.g., by means of microfluidics-
based rheometry [43] or microrheology [44]. This charac-
terization is believed to be particularly relevant for the
quantitative prediction of suspension rheology of concen-
trated systems, still significantly below the maximal critical
packing regime where frictional effects should dominate
and discontinuous shear thickening is expected [12,13].
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