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We report measurements of the geometric alignment of the small-scale turbulent stress and the large-
scale rate of strain that together lead to the net flux of energy from small scales to large scales in two-
dimensional turbulence. We find that the instantaneous alignment between these two tensors is weak and,
thus, that the spectral transport of energy is inefficient. We show, however, that the strain rate is much better
aligned with the stress at times in the past, suggesting that the differential advection of the two is
responsible for the inefficient spectral transfer. We provide evidence for this conjecture by measuring the
alignment statistics conditioned on weakly changing stress history. Our results give new insight into the
relationship between scale-to-scale energy transfer, geometric alignment, and advection in turbulent flows.
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The primary feature that distinguishes turbulence from
more generic unsteady flow is the directed flux of energy
from the scales at which it is injected into the flow to the
scales at which it is dissipated [1]. This flux proceeds from
large to small scales in three dimensions in a “direct”
cascade and in an “inverse” cascade from small to large
scales in two dimensions. Although the intricate details are
not fully understood, there is general consensus on the
broad mechanisms that drive these cascades. Building on
ideas going back to Taylor [2,3], the 3D direct cascade is
thought to be the consequence of the stretching and,
therefore, intensification, of vortices by the turbulent strain
[4]. In 2D, vortex stretching cannot occur for geometric
reasons; instead, a vortex-thinning mechanism, where
patches of (conserved) vorticity are reoriented and distorted
by the turbulent strain without changing their circulation, is
taken to be responsible for the inverse transfer of energy
from small to large scales [5,6].
As with any energy flux, turbulent cascades can be

interpreted as the result of the action of a stress against a
rate of strain. In turbulence, the requisite stress arises from
the exchange of momentum between scales due to the
nonlinearity in the Navier-Stokes equations. In 3D, the
large scales dowork on the small scales, transferring energy
to them, and in 2D, the small scales do work on the large
scales. Once cast in this language, it becomes clear that the
relative geometry of the turbulent stress and the large-scale
strain rate is key to determining the efficiency of the energy
cascade: components of the turbulent stress that are
orthogonal to the strain rate can do no work and, therefore,
cannot transfer any energy. Thus, one would expect strong
alignment between these two tensors to explain the obser-
vation that all turbulent flows display a cascade. In both 2D
and 3D turbulence, however, it has long been known that
the alignment is surprisingly weak [7]. In 3D, with some
assumptions [8], one can relate the stress–strain-rate

alignment to the alignment between the vorticity vector
and the eigenvectors of the strain rate. Efficient downscale
transfer of energy requires that the vorticity be aligned with
the most extensional eigenvector of the strain rate; however,
vorticity is well known to align instantaneously with the
intermediate strain-rate eigenvector instead [9]. Although
this intermediate eigenvector is also weakly extensional in
turbulence [9], the misalignment with the most strongly
stretching direction would appear to severely limit the
amount of energy that can be driven down scale in the
cascade. Likewise, in 2D, the stress and strain rate are on
average nearly perfectly misaligned [10,11], again leading
to an energy flux that is much weaker than it might
otherwise be.
It has recently been argued that in 3D turbulence, this

conundrum can be resolved by properly accounting for
advection [12–14]: by noting that both vorticity and strain
evolve spatiotemporally, it has been shown that the appar-
ent alignment of vorticity with the intermediate strain-rate
eigenvector occurs because the vorticity is, in fact, aligned
preferentially with the direction of the extensional eigen-
vector at a previous time. In this Letter, we show that a
similar effect occurs in 2D turbulence. Using a filter-space
technique to study the flux of energy between scales in a
spatially resolved way [10,15–21], we measure both the
turbulent stress and the large-scale strain rate. By consid-
ering the inner product of these two tensors measured
at different times along Lagrangian trajectories, we show
that the degree of alignment varies with the time lag;
in particular, we find that the (large-scale) strain rate lags
behind the (small-scale) stress. Thus, we find that the strain
rate attempts to align with the previous direction of the
stress, much as was observed for strain and vorticity in
3D turbulence [12,13]. To confirm this interpretation, we
consider the conditional statistics of the alignment for
trajectories along which the stress exhibited little change;
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consistently, these cases show a higher degree of alignment
than the full ensemble of trajectories does. Our results lead
to the conclusion that advection tends to disrupt the delicate
geometric balance that is required to transfer energy from
scale to scale, thereby reducing the efficiency of the
turbulent cascade.
To study this alignment, we conducted experiments in an

electromagnetically driven thin-layer flow cell that produces
nearly two-dimensional flow [22]. We have described this
apparatus in detail previously [20,22], and so we do so only
briefly here. The working fluid is a uniform layer of
saltwater (16%NaCl bymass in deionizedwater)measuring
86 × 86 × 0.5 cm3. This fluid sits on a glass substrate above
a square grid of neodymium-iron-boron permanent magnets
spaced by Lm ¼ 25.4 mm. The magnetic poles point ver-
tically and are arranged in stripes of alternating polarity. By
passing a dc electric current laterally through the fluid, we
can apply a Lorentz body force and generate flow.As long as
the current is not too large, this arrangement produces a
nearly 2D flow field [22]. The nondimensional strength of
the forcing can be captured by the in-planeReynolds number
Re ¼ u0Lm=ν, where u0 is the root-mean-square velocity
and ν is the kinematic viscosity [23]. Here, Re ¼ 270. To
measure the flow field, we use particle tracking velocimetry.
We seed the flow with 51-μm-diameter fluorescent poly-
styrene microspheres. To remove any clustering effects due
to surface tension and to confine the particles to a single
plane, we float a layer (also 5 mm deep) of less-dense pure
water on top of the saltwater layer; the particles lie on the
(miscible) interface between the two. We image the motion
of the particles from above with a four-megapixel camera at
60 frames per second. We extract particle trajectories from
the movies using a multiframe predictive tracking algorithm
[24] from which accurate velocities can be calculated. Since
we track roughly 30 000 particles per frame, they are
spatially dense enough that highly resolved Eulerian veloc-
ity fields can be determined; to do so, while also removing
noise and ensuring two dimensionality, we project the
measured particle velocities onto a basis of streamfunction
eigenmodes [22]. Subsequently, to compute accurate and
unbiased Lagrangian statistics with desired initial condi-
tions, we construct virtual fluid-element trajectories by
integrating their kinematic equations of motion [25].
Studying the details of the flux of energy between scales

in turbulence has historically been challenging. Spectral
methods can provide the mean transfer of energy, but after
Fourier transforming, all connection to the spatial degrees
of freedom of the flow is lost. Here, we instead use a filter-
space technique (FST) to resolve the energetic coupling
between scales simultaneously in space and in scale
[10,16–21]. The core of an FST is the application of a
spectral low-pass filter to the measured velocity field. If this
filter has a cutoff length scale of r, then all variation of the
field on scales smaller than r are suppressed, while the
large-scale structure is retained. The utility of this approach

becomes clear when one considers, for example, the
equation of motion for the filtered kinetic energy

EðrÞ ¼ ð1=2ÞuðrÞi uðrÞi , where the superscript (r) denotes
the cutoff scale of the filter and summation is implied
over repeated indices. The most salient difference between
this equation and that for the full kinetic energy is the
appearance of the new term

ΠðrÞ ¼ −½ðuiujÞðrÞ − uðrÞi uðrÞj � ∂u
ðrÞ
i

∂xj ¼ −τðrÞij s
ðrÞ
ij ; ð1Þ

where sðrÞij is the rate of strain (that is, the symmetric part of

the velocity gradient) of the filtered velocity field, and τðrÞij

is a turbulent stress tensor. ΠðrÞ can be interpreted as the
flux of energy between scales smaller than r and scales
larger than r; for more details and a full derivation of this
term, see Refs. [17,18,20]. Unlike in a fully spectral
approach, ΠðrÞ can be measured at any spatial location,
since it only depends on spatially local quantities. With our
sign convention, ΠðrÞ < 0 denotes a flux of energy from
small scales to large (i.e., inverse energy flux), while
ΠðrÞ > 0 denotes a flux of energy from large scales to small.
In 2D, ΠðrÞ can be reexpressed in terms of the largest

eigenvalues λðrÞτ and λðrÞs of the (deviatoric) stress and strain

rate, respectively, and the angle ΘðrÞ
sτ between the corre-

sponding (unit) eigenvectors êðrÞτ and êðrÞs as [11,21,26]

ΠðrÞ ¼ −2λðrÞτ λðrÞs cos 2ΘðrÞ
sτ : ð2Þ

Written in this way, it is clear that the alignment of the
stress and the strain rate is critical for determining the local
energy flux between scales. In particular, when the eigen-
frames of the stress and the strain rate are oriented at 45°
with respect to each other, the energy flux will vanish
regardless of the magnitudes of these tensors, and indeed,

as we have shown previously [11], ΘðrÞ
sτ is more highly

correlated with the spatial structure of ΠðrÞ than are λðrÞτ or

λðrÞs . Thus, we suggest here that j cos 2ΘðrÞ
sτ j can be thought

of as the efficiency of the energy transfer mechanism, as it
directly gives the fraction of the turbulent stress that does
work against the large-scale strain and, therefore, transfers

energy between scales. When ΘðrÞ
sτ ¼ 0, the stress and the

strain rate are perfectly aligned, and this efficiency goes to

unity; when ΘðrÞ
sτ ¼ 45°, they are perfectly misaligned and

the efficiency vanishes. When ΘðrÞ
sτ ¼ 90°, the stress aligns

perfectly with the compressive strain-rate eigenvector,
giving again a maximally efficient energy transfer but
toward smaller length scales.
In Fig. 1, we show the mean (averaged over space and

time) values of ΠðrÞ and ΘðrÞ
sτ as functions of the filter scale

r. These results are relatively insensitive to the particular
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implementation of the FST [18]; here, we used a spatially
isotropic finite impulse response filter constructed by
convolving a sharp spectral filter with a frequency cutoff
of 2π=r with a Gaussian window function that reduces
ringing. As we have observed before [11], for length scales
above ∼1.6Lm, which we take to be roughly the energy
injection length scale Linj, we see net inverse energy flux, as
is expected in two-dimensional turbulence, although with-
out a developed inertial range given that our Reynolds

number is relatively low. The mean value of hΘðrÞ
sτ i is very

close to 45°, the angle at which the stress and the strain
rate are perfectly misaligned, at all scales, though slightly
smaller where there is net inverse energy transfer. This
result underscores the well-known fact that the net energy
cascade in turbulence arises from a weak asymmetry
between locally strong forward and inverse transfer events
[10,18,20,27]. In terms of our efficiency language, for
r < Linj the energy transfer is completely inefficient, but
even for r > Linj, where the energy cascade does appear to

operate, hΘðrÞ
sτ i ≈ 37° and the efficiency is only about 27%.

Thus, the observed net energy flux through the cascade is
much weaker than it otherwise might be.
This result naturally leads to the question of why the

cascade is so inefficient. Here, we propose at least a partial
answer: that advection upsets the delicate balance between
the turbulent stress and the large-scale strain rate that is
required for energy transfer between scales. A common
explanation for the inverse energy cascade in 2D turbulence
is a vortex-thinning mechanism [5,6]. This picture consid-
ers the evolution of a initially circular small-scale vortex
embedded in a large-scale strain field. It argues that as the
vortex is stretched along the extensional straining direction
and thinned along the compressive direction, its net kinetic

energy will decrease (since its circulation must remain
constant due to Kelvin’s theorem but the length of its
perimeter will increase due to the straining), but its net
velocity will become oriented along the straining direction,
producing a tensile turbulent stress that reinforces the large-
scale strain [10]. For this picture to be correct, however, the
initial vortex must remain embedded in a coherent strain
field long enough for the thinning to occur, and, thus, the
vortex-thinning picture implicitly ignores the effects of
advection or at best assumes that the strain field and the
vortex will be advected in lockstep. This is highly unlikely
to be the case; for example, in 3D turbulence, it has long
been known that rotation has a significantly longer corre-
lation time along trajectories than does strain [28,29]. Thus,
as a vortex in a real, evolving turbulent flow begins to
distort and align with the local large-scale strain, the strain
field itself will change, leading to a weaker-than-expected
instantaneous alignment.
To test this idea, we considered not the instantaneous

alignment between τðrÞij and sðrÞij but rather the alignment
between these two tensors computed at different times
along the same Lagrangian trajectory. In Fig. 2, we plot

hΘðrÞ
sτ ðΔtÞi ¼ hcos−1½êðrÞτ ðtÞ · êðrÞs ðtþ ΔtÞ�i; ð3Þ

where the average is taken over an ensemble of many
trajectories beginning from different initial positions at
different times, for a range of filter scales r. In all cases, we

see that hΘðrÞ
sτ ðΔtÞi decreases as Δt increases from 0; that

is, we observe that the alignment between the stress now
and the rate of strain later (or, equivalently, the rate of strain
now and the stress previously) is stronger than the
instantaneous value. The trend is the opposite for negative
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FIG. 1. (a) Mean spectral energy flux ΠðrÞ as a function of the
filter scale r scaled by the magnet spacing Lm. Negative values
correspond to a flux of energy to larger length scales. (b) Mean

instantaneous angle ΘðrÞ
sτ (in units of π) between the eigenframes

of the stress τðrÞij and the strain rate sðrÞij as a function of filter scale
r. The dashed line shows 45°.
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FIG. 2. Average of ΘðrÞ
sτ ðΔtÞ, the angle between the eigenframes

of the stress at one time and the strain rate at a time Δt later, for
several different filter scales r. Each curve shows ΘðrÞ

sτ ðΔtÞ for a
different r, and the colors correspond to the colors of the symbols
in Fig. 1. The dashed line shows 45°.
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Δt; for negative time lags, the angle quickly equilibrates to
45°, which we would expect if the orientation of the two
tensors were uncorrelated. For filter scales smaller than
Linj, the increasing alignment we see for positive Δt
quickly disappears, consistent with the expectation that
any tendency toward a net cascade in this range of scales
should be weak. For larger r, however, the net alignment
persists for several injection time scales T inj ¼ Linj=u0.
These results allow us to draw two conclusions. First, it is
clear that the alignment between the stress and the strain
rate has coherent dynamics and, therefore, that advection
plays a role in disrupting the instantaneous alignment, just
as it does in 3D turbulence [12–14]. Second, since the
alignment is enhanced for positive Δt, our results indicate
that the rate of strain follows the turbulent stress, in
apparent contradiction to the standard vortex-thinning
picture [10].
This second conclusion can be bolstered by considering

the full PDFs of ΘðrÞ
sτ ðΔtÞ in addition to just the mean value

for different Δt, as we show in Fig. 3 for both positive and
negative Δt. As Δt increases in forward time from 0, the
peak of the PDF shifts to lower values, eventually hitting

ΘðrÞ
sτ ðΔtÞ ≈ 0 when Δt ≈ T inj. For negative time lags,

however, the peak of the PDF shifts toward 45°, and the
PDF eventually becomes uniform, indicating no preferred
orientation between the current stress and the previous rate
of strain.
Our measurements show that the orientation of the

eigenframe of the large-scale rate of strain follows the
evolution of the small-scale turbulent stress but with a time
lag. We have argued that this result implicates the differ-
ential advection of the stress and the strain rate as the origin

of the surprisingly weak instantaneous alignment of these
two tensors. It then follows that if we consider only those
trajectories for which the stress has not changed much in
the past, we should expect to see stronger instantaneous
alignment of the stress and the strain rate. To test this idea,

we computed conditional statistics of ΘðrÞ
sτ . To characterize

the history of the stress along a trajectory, we first measured

the time series of ϕðrÞ
τ , the angle between êðrÞτ , and the

horizontal axis, for each trajectory. We take the standard

deviation of ϕðrÞ
τ over the previous T inj, which we label σ

ðrÞ
ϕ ,

as a measure of the prior variability of the stress orientation.

Instants along a trajectory for which σðrÞϕ is small have
experienced fairly uniform stress fields over their recent
history. We then constructed the conditional averages

hΘðrÞ
sτ jσðrÞϕ ¼ αhσðrÞϕ ii; that is, we measured the mean

instantaneous ΘðrÞ
sτ given that the fluctuations of ϕðrÞ

τ were
some multiple α of the ensemble-averaged value. Our
results for a range of α are shown in Fig. 4 for three
different filter scales. In all cases, it is clear that, as
conjectured, less prior variability in the orientation of

τðrÞij corresponds to stronger instantaneous alignment
between the stress and the strain rate. Thus, our interpre-
tation of our results is borne out by this conditional
analysis.
We have demonstrated that the alignment between the

turbulent stress and the large-scale rate of strain that is
crucial for characterizing the efficiency of scale-to-scale
energy transfer in turbulence cannot be understood without
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considering the effects of advection. In particular, our
results show that the strain rate is better aligned with the
stress at previous times along Lagrangian trajectories than
with its instantaneous value, implying that advection
reduces the efficiency of the cascade from what it would
be in a static turbulent field. These results argue that the
typical vortex stretching and vortex-thinning mechanisms
thought to be responsible for the energy cascade may need
to be modified to account for fluid motion properly.

This work was supported by the U.S. National Science
Foundation under Grants No. CBET-1600292 and
No. CMMI-1563489.

*nto@stanford.edu
[1] G. Falkovich, Symmetries of the turbulent state, J. Phys. A

42, 123001 (2009).
[2] G. I. Taylor, The transport of vorticity and heat through

fluids in turbulent motion, Proc. R. Soc. A 135, 685 (1932).
[3] G. I. Taylor, Production and dissipation of vorticity in a

turbulent fluid, Proc. R. Soc. A 164, 15 (1938).
[4] H. Tennekes and J. L. Lumley, A First Course in Turbulence

(MIT Press, Cambridge, 1972).
[5] V. P. Starr, Physics of Negative Viscosity Phenomena

(McGraw-Hill, New York, 1968).
[6] R. H. Kraichnan, Eddy viscosity in two and three dimen-

sions, J. Atmos. Sci. 33, 1521 (1976).
[7] J. M. Wallace, Twenty years of experimental and direct

numerical simulation access to the velocity gradient tensor:
What have we learned about turublence?, Phys. Fluids 21,
021301 (2009).

[8] V. Borue and S. A. Orszag, Local energy flux and subgrid-
scale statistics in three-dimensional turbulence, J. Fluid
Mech. 366, 1 (1998).

[9] W. T. Ashurst, A. R. Kerstein, R. M. Kerr, and C. H. Gibson,
Alignment of vorticity and scalar gradient with strain rate in
simulated Navier-Stokes turbulence, Phys. Fluids 30, 2343
(1987).

[10] S. Chen, R. E. Ecke, G. L. Eyink, M. Rivera, M. Wan, and
Z. Xiao, Physical Mechanism of the Two-Dimensional
Inverse Energy Cascade, Phys. Rev. Lett. 96, 084502
(2006).

[11] Y. Liao and N. T. Ouellette, Long-range ordering of turbu-
lent stresses in two-dimensional flow, Phys. Rev. E 91,
063004 (2015).

[12] H. Xu, A. Pumir, and E. Bodenschatz, The pirouette effect
in turbulent flows, Nat. Phys. 7, 709 (2011).

[13] A. Pumir, E. Bodenschatz, and H. Xu, Tetrahedron defor-
mation and alignment of perceived vorticity and strain in a
turbulent flow, Phys. Fluids 25, 035101 (2013).

[14] R. Ni, N. T. Ouellette, and G. A. Voth, Alignment of
vorticity and rods with Lagrangian fluid stretching in
turbulence, J. Fluid Mech. 743, R3 (2014).

[15] M. Germano, Turbulence: The filtering approach, J. Fluid
Mech. 238, 325 (1992).

[16] S. Liu, C. Meneveau, and J. Katz, On the properties of
similarity subgrid-scale models as deduced from measure-
ments in a turbulent jet, J. Fluid Mech. 275, 83 (1994).

[17] G. L. Eyink, Local energy flux and the refined similarity
hypothesis, J. Stat. Phys. 78, 335 (1995).

[18] M. K. Rivera, W. B. Daniel, S. Y. Chen, and R. E. Ecke,
Energy and Enstrophy Transfer in Decaying Two-
Dimensional Turbulence, Phys. Rev. Lett. 90, 104502
(2003).

[19] D. H. Kelley and N. T. Ouellette, Spatiotemporal persistence
of spectral fluxes in two-dimensional weak turbulence,
Phys. Fluids 23, 115101 (2011).

[20] Y. Liao and N. T. Ouellette, Spatial structure of spectral
transport in two-dimensional flow, J. Fluid Mech. 725, 281
(2013).

[21] Y. Liao and N. T. Ouellette, Geometry of scale-to-scale
energy and enstrophy transport in two-dimensional flow,
Phys. Fluids 26, 045103 (2014).

[22] D. H. Kelley and N. T. Ouellette, Onset of three-
dimensionality in electromagnetically forced thin-layer
flows, Phys. Fluids 23, 045103 (2011).

[23] D. H. Kelley and N. T. Ouellette, Using particle tracking to
measure flow instabilities in an undergraduate laboratory
experiment, Am. J. Phys. 79, 267 (2011).

[24] N. T. Ouellette, H. Xu, and E. Bodenschatz, A quantitative
study of three-dimensional Lagrangian particle tracking
algorithms, Exp. Fluids 40, 301 (2006).

[25] N. T. Ouellette, P. J. J. O’Malley, and J. P. Gollub, Transport
of Finite-Sized Particles in Chaotic Flow, Phys. Rev. Lett.
101, 174504 (2008).

[26] Z. Xiao, M. Wan, S. Chen, and G. L. Eyink, Physical
Mechanism the Inverse Energy Cascade of Two-
Dimensional Turbulence: A Numerical Approach, J. Fluid
Mech. 619, 1 (2009).

[27] S. Chen, R. E. Ecke, G. L. Eyink, X. Wang, and Z. Xiao,
Physical Mechanism of the Two-Dimensional Enstrophy
Cascade, Phys. Rev. Lett. 91, 214501 (2003).

[28] P. K. Yeung and S. B. Pope, Lagrangian statistics from direct
numerical simulations of isotropic turbulence, J. Fluid
Mech. 207, 531 (1989).

[29] S. S. Girimaji and S. B. Pope, A diffusion model for velocity
gradients in turbulence, Phys. Fluids A 2, 242 (1990).

PRL 117, 104501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

2 SEPTEMBER 2016

104501-5

http://dx.doi.org/10.1088/1751-8113/42/12/123001
http://dx.doi.org/10.1088/1751-8113/42/12/123001
http://dx.doi.org/10.1098/rspa.1932.0061
http://dx.doi.org/10.1098/rspa.1938.0002
http://dx.doi.org/10.1175/1520-0469(1976)033%3C1521:EVITAT%3E2.0.CO;2
http://dx.doi.org/10.1063/1.3046290
http://dx.doi.org/10.1063/1.3046290
http://dx.doi.org/10.1017/S0022112097008306
http://dx.doi.org/10.1017/S0022112097008306
http://dx.doi.org/10.1063/1.866513
http://dx.doi.org/10.1063/1.866513
http://dx.doi.org/10.1103/PhysRevLett.96.084502
http://dx.doi.org/10.1103/PhysRevLett.96.084502
http://dx.doi.org/10.1103/PhysRevE.91.063004
http://dx.doi.org/10.1103/PhysRevE.91.063004
http://dx.doi.org/10.1038/nphys2010
http://dx.doi.org/10.1063/1.4795547
http://dx.doi.org/10.1017/jfm.2014.32
http://dx.doi.org/10.1017/S0022112092001733
http://dx.doi.org/10.1017/S0022112092001733
http://dx.doi.org/10.1017/S0022112094002296
http://dx.doi.org/10.1007/BF02183352
http://dx.doi.org/10.1103/PhysRevLett.90.104502
http://dx.doi.org/10.1103/PhysRevLett.90.104502
http://dx.doi.org/10.1063/1.3657086
http://dx.doi.org/10.1017/jfm.2013.187
http://dx.doi.org/10.1017/jfm.2013.187
http://dx.doi.org/10.1063/1.4871107
http://dx.doi.org/10.1063/1.3570685
http://dx.doi.org/10.1119/1.3536647
http://dx.doi.org/10.1007/s00348-005-0068-7
http://dx.doi.org/10.1103/PhysRevLett.101.174504
http://dx.doi.org/10.1103/PhysRevLett.101.174504
http://dx.doi.org/10.1017/S0022112008004266
http://dx.doi.org/10.1017/S0022112008004266
http://dx.doi.org/10.1103/PhysRevLett.91.214501
http://dx.doi.org/10.1017/S0022112089002697
http://dx.doi.org/10.1017/S0022112089002697
http://dx.doi.org/10.1063/1.857773

