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Twisted ribbons under tension exhibit a remarkably rich morphology, from smooth and wrinkled
helicoids, to cylindrical or faceted patterns. This complexity emanates from the instability of the natural,
helicoidal symmetry of the system, which generates both longitudinal and transverse stresses, thereby
leading to buckling of the ribbon. Here, we focus on the tessellation patterns made of triangular facets. Our
experimental observations are described within an “asymptotic isometry” approach that brings together
geometry and elasticity. The geometry consists of parametrized families of surfaces, isometric to the
undeformed ribbon in the singular limit of vanishing thickness and tensile load. The energy, whose
minimization selects the favored structure among those families, is governed by the tensile work and
bending cost of the pattern. This framework describes the coexistence lines in a morphological phase
diagram, and determines the domain of existence of faceted structures.
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Sheets subjected to external forces store the exerted work
in elastic deformations that underlie wrinkled and crumpled
states. Under tension, the exerted work is typically stored as
stretching energy. When the forces are compressive, strain
is negligible and the exerted work is instead stored as
bending energy. For instance, a sheet resting on a soft
substrate and compressed uniaxially deforms isometrically
into wrinkles or folds [1,2]. However, when compression
results from geometrical constraints, the final shape may
involve a complex combination of bending and stretching
energies. For instance, confining a thin sheet in 3D (i.e., a
crumpled paper ball) is often described as an assembly of
flat polygonal facets delimitated by ridges where stretching
and bending predominate [3]. Such a faceted morphology
is an efficient minimizer of stretching since it is isometric to
the undeformed sheet (i.e., strainless) everywhere except at
those narrow ridges. Two such types of ridges have been
reported: (i) isometric (cylindrical) ridges, which involve
only bending, and (ii) stretching ridges, in which the
bending and stretching energies are comparable, leading
to a width wr ∼ L2=3t1=3, where L ≫ wr is the ridge length
and t ≪ wr is the sheet thickness [3,4]. In addition,
transitions from isometric to stretching ridges were recently
reported for simple geometries. Witten showed that a single
stretching ridge becomes isometric when both ends are
truncated [5], and Fuentealba et al. have demonstrated a
similar phenomenon for a tearing flap, when the pulling
force exceeds a threshold Fc∼B=ðt2=3L1=3Þ (where B∼Et3

is the bending modulus and E is the Young’s modulus of
the sheet) [6]. Both studies suggest that the curvature at the
ridge’s end completely determines its shape.
In this Letter, we investigate the transition between

isometric and stretching ridges in a twisted ribbon, and

characterize its impact on the mechanics of ribbons. Indeed,
twisting ribbons was suggested as an original method to
geometrically constrain thin sheets. In this setup, first
proposed by Green [7,8], the two short edges of a flat
ribbon are clamped and held apart by a tensile force while a
twist is applied. In contrast to crumpling experiments, the
existence of two degrees of freedom, the twist angle η and the
tensile force T, enriches the variety of observed morphol-
ogies. The twist and tension determine (i) the stretching of
the edges, and (ii) the contraction of the midline, χ ¼
η2=24 − T (where χ ¼ 1 − Lee=L, Lee being the end-to-
end distance). The helicoid is the basic shape appearing for
moderate twist angles η <

ffiffiffiffiffiffiffiffi
24T

p
[Fig. 1(d)]. Upon increas-

ing the twist below a critical tension T�, the helicoid midline
is contracted and undergoes a buckling instability, whereby
longitudinal wrinkles (also described as a “zigzag” fold)
form around its midline, η >

ffiffiffiffiffiffiffiffi
24T

p
[9] [see Fig. 1(c)].

Further increasing the twist leads to a faceted morphology,
also called a “creased helicoid” [10] or “ribbon crystal” [11]
[Figs. 1(a) and 1(b)]. Additionally, the helicoid buckles in
the transverse direction upon increasing the twist for a
tension larger than T� [12], and reaches a cylindrical shape
[Fig. 1(e)]. Parts of these morphologies were recently
organized in a tension-twist phase diagram by Chopin
and Kudrolli [10]. We must clarify that we refer to tensile
loads as “large,” “moderate,” or “small” according to their
ratiowith certain powers of the thickness t, but even a “large
tension” corresponds to characteristic strains<10−2, deeply
in theHookean regimeof thematerial response. In this sense,
the morphological transitions reported in Refs. [7,8,10] and
here are universal and not material specific.
The faceted morphology [Figs. 1(a) and 1(b)] has been

described as an isometric shape by solving effective
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equations for the ribbon’s midline [13], or by assuming
triangular facets separated by isometric ridges [11].
However, facets are observed over a whole region of the
twist-tension phase diagram, where the tension is small but
nonzero [10], suggesting that this morphology accommo-
dates a finite amount of stretching. Furthermore, upon
increasing the tension at a moderate twist, the facets turn
into longitudinal wrinkles, which are clearly stretched [10]
[see Fig. 1(c)]. Motivated by these observations, we focus
here on the faceted morphology: we determine experimen-
tally its domain of existence and propose a theoretical
framework to explain how facets separated by isometric
ridges (FIRs) turn into facets separated by stretching ridges
(FSRs), and then to longitudinal wrinkles (WH), by
increasing the tension.
We use ribbons of length L, width W, and thickness t

under an external tension T and clamped at their short
edges, which are twisted relative to each other by a
prescribed angle Θ. Our ribbons are composed of poly-
ethylene terephthalate (PET) (Young’s modulus E≃3GPa).
To simplify the discussion, we assume the Poisson ratio
ν ¼ 0 (the numerical coefficients may depend on the
Poisson ratio, but the qualitative results, including the
transverse buckling instability, do not [12]). We useW as a
unit of length, and the stretching modulus Y ¼ tE as a unit
of in-plane stress (i.e.,W ¼ Y ¼ 1), and introduce the twist
per unit ribbon length η ¼ ΘW=L, and the energy per unit
lengthU. The different observed shapes are shown in Fig. 1
and are organized in a phase diagram (Fig. 2), which
focuses on the longitudinally buckled morphologies and
complements the one reported in Ref. [10].

Our experimental “trajectory” is depicted by the gray
lines in Fig. 2. To avoid hysteresis, the tension at each
segment is either constant or increases. We start at a very
small tension and zero twist, and progressively increase the
twist. Once the chosen twist angle is attained, the tension is
increased progressively. First, the ribbon takes a helicoidal
shape [Fig. 1(d)]. As η is increased further, the centerline of
the helicoid is under compression (η >

ffiffiffiffiffiffiffiffi
24T

p
). A linear

stability analysis shows that buckling occurs when
ηl ≃

ffiffiffiffiffiffiffiffi
24T

p þ 10t, forming first wrinkled helicoids
[7–10,12]. The prediction for the critical twist is compared
to our experimental results in Fig. 3, and shown in the phase
diagram (Fig. 2, red line).
Facets separated by isometric ridges.—Increasing the

twist beyond the buckling threshold, at a fixed small
tension, we observe a shape resembling facets separated
by rounded cylindrical ridges [see Fig. 1(a)]. We follow
Ref. [11] and model it with flat triangular facets separated
by cylindrical ridges. Such a shape is parametrized by the
two angles θ and ϕ, formed, respectively, between the
ridges and the ribbon’s midline, and between adjacent
facets [Figs. 1(b) and 1(g)], and by the radius of curvature
of the ridges Rc. In contrast to Ref. [11], we find θ and Rc
by energy minimization.
We evaluate the energy using the general framework of

asymptotic isometries (AI) [12], which is valid for physi-
cally admissible states in the doubly asymptotic limit of
vanishing tension T and thickness t. The energy of such
states can be approximated by the sum of a tensile work and
an elastic energy Uel, both of which vanish in the limit t,
T → 0:

U ¼ Uel þ χT; ð1Þ

FIG. 2. Phase diagram of a PET ribbon with t≃ 0.012 and
L≃ 18. The solid lines correspond to the coexistence lines (see
text). The gray lines with arrows represent the experimental
trajectory. T� and η� correspond to the helicoid-cylinder tran-
sition at a fixed length [10].

FIG. 1. (a)–(e) Pictures of the different morphologies. (a) Iso-
metric ridges (FIRs). (b) Stretching ridges (FSRs). (c) Wrinkled
helicoid (WH). (d) Helicoid. (e) Cylinder. (f) Parametrization of
the stretching ridges illustrated in (b); the gray areas denote the
ridges. (g) Parametrization of the isometric ridges illustrated
in (a).
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This formalism allows us to compute both Uel and χ from
geometrical and mechanical considerations, yielding
expressions that have no explicit dependence on T and
which can be formally evaluated at T ¼ 0. We can thus
make a tension-independent construction by using param-
eters with geometrical meaning (θ, ϕ, Rc), whose actual
dependence on T is found when minimizing the whole
energy (1). Notice that the (unwrinkled) helicoid, for
instance, is not an asymptotic isometry of the ribbon, since
its elastic energy is proportional to η4 and does not vanish
as t, T → 0 [12]. More generally, in the asymptotic limit
t → 0, the AI framework is valid only if the ratio η2=T,
between the twisted-induced stress η2 and the exerted
tension T, is sufficiently large. Since here η2=T ≲ 100,
we cannot expect a perfect quantitative agreement of the
results obtained in this framework with the experiments.
We will use this framework not only for the FIRs but also
for the other shapes obtained upon increasing the tension. A
similar approach has been used in other studies of sheets (or
shells) on which a Gaussian curvature is imposed in the
presence of a small tension [14–16].
The twist ηðθ;ϕ; RcÞ and contraction χðθ;ϕ; RcÞ of a

FIRs can be obtained from geometrical arguments (see
Ref. [11] and the Supplemental Material [17]). Upon
expansion for small η and Rc, we obtain

χFIR ¼ η2

8
þ η3Rc

sinð2θÞ þ
�

1

48 sinðθÞ2 −
5

384

�
η4

þOðη5RcÞ: ð2Þ

The bending energy of a single ridge is given by
ur ∼ t2η=½Rc sinðθÞ2� [using ϕ≃ η= sinðθÞ þOðη3Þ [17]].
Assuming a small width of the ridge compared to the
wavelength, wr ≪ λ, there are N=L≃ 1=λ ¼ tanðθÞ ridges
per unit ribbon length, and the elastic energy per unit ribbon
length becomes

Uel
FIR ∼

t2η
Rc sinð2θÞ

: ð3Þ

Minimizing the global energy Uel
FIR þ χFIRT (keeping

terms up to order η3 in the contraction) yields

θ ¼ π=4; λ ¼ 1; Rc ∼ t=ðη
ffiffiffiffi
T

p
Þ; ð4Þ

UFIR ∼ tη2
ffiffiffiffi
T

p
þ η2T þOðη4Þ: ð5Þ

Notably, the independence of the wavelength λ on tension
indicates the robust, geometrical nature of the FIRs shape,
despite the nontrivial dependence of its energy on the
tensile load T. In hindsight, this robustness explains the
validity of the purely geometric approach of Refs. [11,13]
for describing the general structure of the FIRs. In Fig. 4,
we test the prediction λ ¼ 1 by varying the tension T at
constant η. Only the low-T regime, where λ is constant,
exhibits the FIRs. The independence of λ on T is in
agreement with the theory, despite a slight discrepancy
between the observed and predicted values of the wave-
length that may be attributed to the finite size of the ribbon
(L≃ 15), and to the global rearrangement needed to adjust
the wavelength. We also note that a similar scaling of Rc
with t and T was obtained in Ref. [6] for a completely
different system, namely, the width of a pulling flap in an
isometric configuration. Finally, inspection of Eq. (5)
shows that the tensile work and elastic energy are balanced
only for T ∼ t2. Therefore, for FIRs at a very small tension
(T ≪ t2), the work done by the torque upon twisting the
ribbon is stored efficiently as bending energy in the ridges,
whereas the observation of FIRs for a larger tension
(T ≫ t2) implies that the twister transmits its work to
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FIG. 3. Critical twist angle for the helicoid-facets transition,
ηl, as a function of

ffiffiffiffiffiffiffiffi
24T

p þ 10t for different ribbons of PET
(thicknesses are as indicated).

λ/
λm

ax

λ

λ

FIG. 4. Evolution of the measured size of the facets λ=λmax
(filled symbols) for different PET ribbons (λmax ≃ 1.3, t ¼ 0.012,
η ¼ 0.37). The red lines corresponds to the theoretical λðTÞ
curves for FIRs and FSRs.
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the puller and the ribbon becomes a “bad capacitor” of
energy.
Facets separated by stretching ridges.—Upon increasing

the tension, the radius of curvature of the ridges decreases,
until the ridges pinch along the ribbon’s long edges
[Fig. 1(b)]. From visual inspection and the study of pulling
flaps [6], we hypothesize that the ribbon’s shape consists of
facets separated by stretching ridges (FSRs).
For the FSRs, the contraction χFSR can be directly

evaluated by considering Rc ≪ η [18], retaining only the
η2 and η4 terms of Eq. (2). The elastic energy of a single
stretching ridge is given by ur ∼ t5=3l1=3

r ϕ7=3, where lr ¼
1= sinðθÞ is the length of a ridge [19,20]. Using the above
geometric relationships between ϕ, λ, θ, and η, we deduce
that the elastic energy per unit ribbon length is

Uel
FSR ∼

t5=3η7=3

sinðθÞ5=3 cosðθÞ : ð6Þ

Again, the total energy Uel
FSR þ χFSRT should be

minimized. The angle θ is the solution of
8½3tanðθÞ2−5�sinðθÞ1=3=cosθ¼ðη=tÞ5=3T. Interestingly, a
physical solution only exists for θ ≥ θc ¼ arctanð ffiffiffiffiffiffiffiffi

5=3
p Þ,

which determines the size of the facets at vanishing
tension, λ¼ ffiffiffiffiffiffiffiffi

3=5
p ≃0.78. For a small tension, the

wavelength slightly decreases with tension as λ≃
0.78 − 6.4 × 10−3ðη=tÞ5=3T. The energy of the FSRs rib-
bon at small tension becomes

UFSR ∼ t5=3η7=3 þ η2T þOðη4Þ: ð7Þ

For isometric ridges (FIRs), increasing the tension
decreases the radius of curvature Rc of the ridges
[Eq. (4)], thus increasing the elastic energy of the ribbon.
At some critical value of the tension, it becomes energeti-
cally favorable to switch to stretching ridges (FSRs), which
enable saving some bending energy. Comparing the total
energy of both faceted shapes [Eqs. (5) and (7)], we find
that the FSRs appears for tensions above

TFIR-FSR ∼ t4=3η2=3: ð8Þ

This prediction is shown in the phase diagram (Fig. 2), in
good agreement with our experimental observations. This
scaling can also be obtained through a direct comparison of
the widths of the isometric, ηRc ∼ t=

ffiffiffiffi
T

p
, and stretching,

ðt=ηÞ1=3, ridges. We note that the predicted dependence of
the tension in t is similar to the transition force found in
Ref. [6] between the isometric and stretching ridges for
pulling flaps. Figure 4 provides significant support for the
theoretical prediction of a sharp transition of the wave-
length λ from a tension-independent plateau in a low-T
regime (FIRs) to a tension-dependent branch (FSRs).

Another recent work [21] also found a sharp transition
of the facet’s size upon increasing the tension.
In the FSRs regime, the evolution of the wavelength as a

function of tension can be obtained numerically up to an
unknown numerical factor multiplying T (see Fig. 4). To
determine the asymptotic behavior of the wavelength λ at
large tension, we expand the two terms in the energy in
λ≃ ðπ=2Þ − θ:

Uel
FSR þ χFSRT ∼

t5=3η7=3

λ
þ Tη2½1þ η2ð1þ λ2Þ�; ð9Þ

whose minimization leads to λ ∼ ðt=ηÞ5=9T−1=3. This rela-
tion is consistent with the general trend for the wavelength.
Inserting the wavelength expression in Eq. (9) yields the
total energy of the FSRs ribbon for large tensions, i.e.,
when the angle θ is close to π=2,

UT
FSR ∼ t10=9η26=9T1=3 þ Tη2: ð10Þ

The FSRs description assumes that the width of the ridges,
which is given by wr ∼ ðt=ηÞ1=3, remains small compared to
the size of the facets. This assumption holds as long
as T < ðt=ηÞ2=3.
Wrinkled helicoid.—Turning now to higher tension

values, it is natural to ask how the FSRs state [Fig. 1(b)]
transforms into the wrinkled helicoid [Fig. 1(c)], observed
for tensions slightly smaller than the fixed ribbon length
limit T ¼ η2=24 (see Fig. 2) [22]. For T < η2=24, the stress
field within a twisted ribbon can be divided into three parts.
The central part of the helicoid jrj < rwr is under com-
pression, while the two outer parts (rwr < jrj < 1=2)
remain stretched. A basic description of the wrinkled
helicoid state has been developed in Ref. [12], using a
far-from-threshold theory, whereby the inner zone around
the helicoid’s midline is decorated with longitudinal wrin-
kles that fully relax the compression while the two outer
strips are stretched. The width 2rwr of the wrinkled zone is
determined by the ratio T=η2, vanishing for T=η2 → 1=24
and close to 1 at asymptotic isometry, where T=η2 → 0. In
this limit, the wrinkled helicoid provides a remarkable
example of a state that is arbitrarily close to isometric
deformation of the ribbon, although the Gaussian curvature
K of the envelope (helicoidal) shape is finite (−η2). This
type of “nondevelopable isometry” [23] is strictly different
from a piecewise-developable shape (e.g., the faceted
shapes discussed above), for which K ¼ 0 almost every-
where, echoing ideas from the mathematical literature [24].
While a full characterization of the wrinkled helicoid is
beyond the scope of the current work, we use below a
scaling analysis to explore the possibility of a transition
from FSRs to a wrinkled helicoid at the asymptotic
isometry limit t, T → 0. Note that this is obviously a crude
approximation of the shape observed in Fig. 1(b), where the
wrinkles do not reach the edges.
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Assuming that the ribbon does approach a fully wrinkled
helicoid shape at T ≪ η2, the contraction χWH can be
computed by assuming that the edges, jrj ¼ rwr ≈ 1=2, are
neither wrinkled nor stretched. A simple calculation yields

χWH ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

η2

4

r
¼ η2

8
þ η4

128
þOðη6Þ: ð11Þ

Note that this expression corresponds to the contraction of
the facets given by Eq. (2), in the limit Rc → 0, θ → π=2. In
order to evaluate the elastic energy, we must determine the
amplitude A and wavelength λ of the wrinkles. Since the
wrinkles completely relax the compression, we obtain the
“slaving condition”: A=λ ∼ η [12]. The elastic energy is
governed by stretching in the transverse direction,
Ustr ∼ A4, and bending in the longitudinal direction,
Ubend ∼ t2A2=λ4. Minimizing the total energy with respect
to λ yields

λ ∼ ðt=ηÞ1=3; UWH ∼ t4=3η8=3 þ Tη2: ð12Þ

Unsurprisingly, the wavelength scales with the thickness
similarly to the width of the stretching ridge [19], reflecting
the same type of energy balance used in both cases.
Comparing the energy estimates for both morphologies
[Eqs. (10) and (12)] we see that the WH is energetically
favorable for tensions above

TFSR-WH ∼ ðt=ηÞ2=3: ð13Þ

Remarkably, this occurs when the size of the facets
becomes comparable to the width of a ridge in the
FSRs. Note that this value is much larger than the tension
where the FSRs appears [see Eq. (8)], which guarantees a
large domain of existence for the FSRs. However, the
predicted value of the transition TFSR-WH is larger than the
critical tension T� ∼ t (see Fig. 2) where transverse buck-
ling instability occurs [12], meaning that the WH cannot
exist in the asymptotic isometry limit. The experimental
data show a transition at T=η2 ≃ 1=40 (Fig. 2), rather close
to the onset of longitudinal buckling, T=η2 < 1=24. We are
thus far from the asymptotic isometry regime (T=η2 → 0).
In conclusion, we employed here the framework of

asymptotically isometric shapes, together with an analysis
of the energy of elastic ridges, to classify the various types
of longitudinally buckled morphologies attained by a
twisted ribbon at a very small thickness and tensile load:
facets separated by isometric or stretching ridges, and a
wrinkled helicoid. We hope that the rich plethora of distinct
patterns and transitions will lead to further studies of this
system as a model for the spontaneous emergence of
morphological complexity in elastic sheets under geometric
constraints.
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