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We present a general method to obtain the exact rate function Ψ½a;b�ðkÞ controlling the large deviation
probability Prob½IN ½a; b� ¼ kN� ≍ e−NΨ½a;b�ðkÞ that an N × N sparse random matrix has IN ½a; b� ¼ kN
eigenvalues inside the interval ½a; b�. The method is applied to study the eigenvalue statistics in two distinct
examples: (i) the shifted index number of eigenvalues for an ensemble of Erdös-Rényi graphs and (ii) the
number of eigenvalues within a bounded region of the spectrum for the Anderson model on regular random
graphs.A salient feature of the rate function in both cases is that, unlike rotationally invariant randommatrices, it
is asymmetric with respect to its minimum. The asymmetric character depends on the disorder in a way that is
compatible with the distinct eigenvalue statistics corresponding to localized and delocalized eigenstates. The
results also show that the level compressibility κ2=κ1 for the Anderson model on a regular graph satisfies
0 < κ2=κ1 < 1 in the bulk regime, in contrast with the behavior found in Gaussian random matrices. Our
theoretical findings are thoroughly compared to numerical diagonalization in both cases, showing a reasonable
good agreement.
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Since the fundamental works of Wigner [1] and Dyson
[2–4] that lay the foundations of random matrix theory,
several observables related to the eigenvalue statistics of
N × N random matrices have been studied and a wealth of
quantitative information is currently available, constituting
an invaluable tool to address problems in various disciplines
[5]. A primary observable is the number of eigenvalues
IN ½a; b�within a bounded interval ½a; b� on the real line. The
statistics of IN ½a; b� describes the ground-state fluctuations
of many-body systems [6,7], whose experimental realization
may be achieved by confining cold atoms in optical laser
traps [8]. From a more theoretical perspective, the fluctua-
tions of IN ½a; b� provide a criterion to distinguish between
the localized and the extended phase in noninteracting
disordered electronic systems [5,9], due to the striking
different behavior of the eigenvalue statistics in each phase.
Several works have been also devoted to the statistics of the
number of eigenvalues in an unbounded interval ð−∞; b�
[10–18], which is relevant to problems in different areas,
such as the study of the intricate energy landscape of
disordered systems [10,19,20], or the meaningful analysis
of the correlation matrix built from large data sets [13,17].
Theseworks dealwith rotationally invariant randommatrices
(RIRM), where the joint distribution of eigenvalues is
analytically known and the Coulomb gas method can be
applied, yielding analytical results not only for typical
statistical fluctuations of IN ½a; b�, but also for atypical, rare
fluctuations, which remain finite for N → ∞.
Although the Coulomb gas method has played a crucial

role in random matrix theory, its application is limited to
RIRM. The statistics of IN ½a; b� in other interesting random

matrix ensembles has eluded a careful treatment, as the
analytical form of the joint distribution of eigenvalues is
not generally known. In this sense, themost relevant examples
come from spectral graph theory [21], in which the central
interest lies in the eigenvalue statistics of certain matrices
related to sparse random graphs, defined as a set of N nodes
connected randomly by edges. The behavior of the fluctua-
tions of IN ½a; b� in random graphs is an interesting subject
from the theoretical side, due to the interplay between the
distinct statistical properties of eigenvalues corresponding to
localized and extended states, both usually coexisting in the
spectra of random graphs [22–26]. In the last decade, random
graphs have become a fundamental tool to explore different
branches of science, finding applications in complex net-
works, spin glasses, and information theory (see [27,28], and
references therein). Another important application is the study
of transport properties in disordered electronic systems, where
random graphs give rise to mean-field models [22,23,25,29–
31]. Motivated by the connection between Anderson locali-
zationona regular randomgraph (RRG)and localization in the
Fock space ofmany-body quantum systems [32,33], there has
been a renewed interest in the Anderson model on a RRG due
to the possible existence of a novel, nonergodic delocalized
phase [31,34–40], which would be characterized by extended
eigenstates corresponding to uncorrelated energy levels [31].
In spite of this ubiquitousness, analytical techniques to pursue
an in-depth analysis of the eigenvalue fluctuations of random
graphs are still lacking, even in the context of the well-studied
Anderson model on a RRG.
In this Letter, we introduce a powerful method to compute

analytically the rate function Ψ½a;b�ðkÞ describing the large
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deviations that a largeN × Nmatrix associatedwith a random
graph model has IN ½a; b� ¼ kN eigenvalues inside ½a; b�.
Our approach explores an analogy between spin glasses and
random matrices by mapping the problem of computing the
cumulant generating function (CGF) of IN ½a; b� in a free-
energy calculation reminiscent from spin glasses, which can
be pursued using the replicamethod [41]. In order to illustrate
the general character of our technique, we present results for
two different examples: (i) the rate function of INð−∞; L� for
Erdös-Rényi (ER) random graphs; (ii) the statistics of
IN ½−L;L� for the Anderson model on a RRG. As a common
finding, the rate function of IN is asymmetric with respect to
its minimum, in contrast to its symmetric nature for RIRM
studied up to the present. We argue that such asymmetry
comes from the presence of both localized and extended states
in the spectra of random graphs. As another outcome of the
method, our results show that, for fixed L ¼ Oð1Þ and large
N, the level compressibility κ2=κ1 [42,43] for the Anderson
model on aRRGfulfills 0 < κ2=κ1 < 1, which complieswith
the absence of strong level repulsion.All results are compared
with numerical diagonalization of large random matrices,
showing a fairly good agreement.
We consider an N × N symmetric real matrix H

with eigenvalues λ1;…; λN , where IN ½a; b� denotes the
number of eigenvalues inside ½a; b� ⊆ R. If ρNðλÞ ¼
ð1=NÞPN

i¼1 δðλ − λiÞ, obviously
IN ½a; b� ¼ N

Z
b

a
dλρNðλÞ: ð1Þ

Using the discontinuity of the complex logarithm along
the branch cut on the negative real axis as a prescription
of the Heaviside step function Θð−xÞ ¼ ð1=2πiÞlimη→0þ×
½lnðxþ iηÞ − lnðx − iηÞ�, one derives the expression

IN ½a; b� ¼ −
1

πi
lim
η→0þ

ln

�
ZðbηÞZða⋆η Þ
Zðb⋆η ÞZðaηÞ

�
; ð2Þ

where aη ≡ a − iη and bη ≡ b − iη. We have introduced
ZðzÞ ¼ ½detðH − z1Þ�−1=2, with 1 theN × N identity matrix
and ð� � �Þ⋆ the complex conjugation. Next we introduce the
CGF for the statistics of IN ½a; b�

F ½a;b�ðyÞ ¼ − lim
N→∞

1

N
lnhe−yIN ½a;b�i; ð3Þ

where h� � �i represents the average over the ensemble of
randommatricesH, specified through the distributionpðHÞ.
Combining Eqs. (2) and (3), one can write

F ½a;b�ðyÞ ¼ − lim
N→∞

lim
η→0þ

1

N
lnQ½aη;bη�ðyÞ; ð4Þ

with
Q½aη;bη�ðyÞ¼hZiy=πðb⋆η ÞZiy=πðaηÞZ−iy=πðbηÞZ−iy=πða⋆η Þi:

ð5Þ
Assuming that F ½a;b�ðyÞ is differentiable for arbitrary y ∈ R
[44], from large deviation theorywehave that Prob½IN ½a; b� ¼
kN� ≍ e−NΨ½a;b�ðkÞ, where the rate function Ψ½a;b�ðkÞ [45] is
related to the CGF F ½a;b�ðyÞ by the Legendre transform

−Ψ½a;b�ðkÞ ¼ inf
y∈R

½ky − F ½a;b�ðyÞ�; ð6Þ

while the lth cumulant κl½a; b� of IN ½a; b� follows from

κl½a; b� ¼ ð−1Þlþ1
∂lF ½a;b�ðyÞ

∂yl
����
y¼0

: ð7Þ

Thus, the CGF is the central object of interest, since the
computation ofΨ½a;b�ðkÞ and κl½a; b� boils down to being able
to determine F ½a;b�ðyÞ.
Fortunately,F ½a;b�ðyÞ can be calculated exactly forN→∞

using spin-glass techniques [41]. According to Eqs. (4) and
(5), F ½a;b�ðyÞ is obtained from the ensemble average of
imaginary powers of ZðzÞ, which is an unworkable calcu-
lation. In order to overcome this obstacle, one employs the
replica method as discussed in [46], by defining the function

Qrðnþ; n−Þ ¼ h½Zðb⋆η ÞZðaηÞ�nþ½ZðbηÞZða⋆η Þ�n−i ð8Þ
in terms of positive integers n�. Once Qrðnþ; n−Þ is
computed in the limit N → ∞, the function Q½aη;bη�ðyÞ of
Eq. (5) is recovered by making an analytical continuation of
n� to the complex plane and then performing the replica limit
n� → �iy=π of Qrðnþ; n−Þ. Although the general scheme
of the replica approach, including the underlying interchange
of limits N → ∞ and n� → �iy=π, has been rigorously
established only for some disordered systems [47], the
replica method has proven to be a valuable tool to calculate
exactly the averaged spectral properties of random matrices
for N → ∞ (see [48] and references therein). All technical
details of the replica method to compute Q½aη;bη�ðyÞ are
discussed in the Supplemental Material [48].
In order to illustrate the versatility of our approach, we

study two different examples: (i) the number of eigenvalues
inside ð−∞; L�, also known as the shifted index number, for
the adjacency matrix of Erdös-Rényi (ER) graphs [56];
(ii) the number of eigenvalues within ½−L; L� for the
Hamiltonian describing the Anderson model on a RRG
[57]. The statistics of IN is studied from the eigenvalues
of an N × N symmetric random matrix H. Both models
are defined by a common matrix H with entries
Hij ¼ ϵiδij þ cij, where fϵig are independent random
variables drawn from the distribution PϵðϵÞ.
The structure of each random graph is encoded in the

entries fcijg of the underlying adjacency matrix [56]:
cij ¼ 1 if nodes i and j are connected, and cij ¼ 0

otherwise. The distributions of fcijg for each example
are presented in [48]. It is important to note that, for a RRG,
the number of neighbors connected to each node is fixed to
an integer c, while this quantity fluctuates from node to
node in the case of ER random graphs, with an average
value c ∈ R. We refer to [48] for further details regarding
the definition of each random graph model.
We present below the main outcomes of the method,

namely the analytical results for the rate functions in each
case. Let F ðpÞ

L ðyÞ and F ðaÞ
L ðyÞ denote, respectively, the

CGF’s for the examples (i) and (ii) introduced above.
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After following the replicamethod [48], one ends upwith the
expressions

F ðpÞ
L ðyÞ ¼ c

2

Z
dudvωpðuÞωpðvÞ½eðy=πÞφðu;vÞ − 1�

− ln

�Z
duμðuÞeðy=πÞθðuÞ

�
; ð9Þ

F ðaÞ
L ðyÞ ¼ 1

2
ðc − 2Þ ln

�Z
dudvνðu; vjcÞeðy=πÞ½θðuÞþθðvÞ�

�

−
c
2
ln

�Z
dudvνðu; vjc − 1Þeðy=πÞ½θðuÞþθðvÞ�

�
;

ð10Þ
where u and v are complex variables, and we have defined

θðuÞ¼−
i
2
ln

�
u
u⋆
�
; φðu;vÞ¼−

i
2
ln

�
1þ 1

uv

1þ 1
ðuvÞ⋆

�
: ð11Þ

The integrals with the measure dudv in Eqs. (9) and (10) run
over all possible values of the real and imaginary parts of u
and v, with the constraints Reu > 0 and Rev > 0 [48].
The function μðuÞ is the joint distribution of ðReu; ImuÞ,

while νðu; vjcÞ is the joint distribution of the real and
imaginary parts of u and v for a fixed c. These quantities
are evaluated from

μðuÞ ¼
X∞
k¼0

e−cck

k!

Z �Yk
n¼1

dunωpðunÞ
�

× hδ½u − Fϵðu1;…;kÞ�iϵ; ð12Þ

νðu;vjcÞ¼
Z �Yc

n¼1

dundvnωaðun;vnÞ
�

× hδ½u−Fϵðu1;…;cÞ�δ½v−F−ϵðv1;…;cÞ�iϵ; ð13Þ
with

Fϵðu1;…;kÞ ¼ iðϵ − z�Þ þ
Xk
n¼1

1

un
; ð14Þ

and z ¼ L − iη. The symbol h…iϵ denotes the average over
ϵ. The system of equations is closed for each example by
the equations for the joint distributions ωpðuÞ and ωaðu; vÞ

ωpðuÞ ¼
eðy=πÞθðuÞμðuÞR
dueðy=πÞθðuÞμðuÞ ; ð15Þ

ωaðu; vÞ ¼
eðy=πÞ½θðuÞþθðvÞ�νðu; vjc − 1ÞR

dudveðy=πÞ½θðuÞþθðvÞ�νðu; vjc − 1Þ : ð16Þ

The limit η → 0þ is implicit in Eqs. (9) and (10) as well as
in the equations for the distributions.
The system of Eqs. (12)–(16) determine all distributions

needed to calculate F ðpÞ
L ðyÞ and F ðaÞ

L ðyÞ. By substituting
Eqs. (12) and (13) into Eqs. (15) and (16), we obtain self-
consistent equations for ωpðuÞ and ωaðu; vÞ, whose

solutions depend on y. As the y-dependent factors play
the role of reweighting terms in Eqs. (15) and (16), these are
solved numerically by a weighted population dynamics
algorithm, discussed in [48]. The subsequent numerical
solutions are used to evaluate the CGF’s of Eqs. (9) and
(10) for different values of y, and the corresponding rate

functions ΨðpÞ
L ðkÞ and ΨðaÞ

L ðkÞ follow from Eq. (6). For
y ¼ 0, Eqs. (15) and (16) have a standard form, already found
in similar problems [24,46,58,59].
First, we present results for the rate function ΨðpÞ

L ðkÞ
governing the statistics of INð−∞; L� for ER graphs with

PϵðϵÞ ¼ δðϵÞ. The functionΨðpÞ
L ðkÞ for c ¼ 3 is displayed in

Fig. 1, where we compare the population dynamics results
with numerical diagonalization of finite matrices. Since the
probability of observing INð−∞; L� ¼ kN behaves as

e−NΨðpÞ
L ðkÞ for N ≫ 1, there is a compromise between con-

sidering larger and larger N to suppress finite size effects
while at the same time exploring a sizeable subinterval of
k ∈ ½0; 1�. In spite of this difficulty, numerical diagonaliza-
tion results approach the theoretical results for increasingN.
The effect of the average connectivity c on ΨðpÞ

L ðkÞ is

illustrated in Fig. 2. A notable feature of ΨðpÞ
L ðkÞ is its

asymmetry around the position of its minimum, located at
the typical value ktyp ¼ limN→∞hINð−∞; L�i=N. This is at
odds to the behavior of the rate functions describing the
eigenvalue statistics in RIRM studied up to the present
[6,11–18], but consistent with the gradual change of the
eigenvalue statistical properties as c increases [22,23]. For
c < 1, the graph is composed of finite, disconnected
clusters, and all eigenvectors are localized [23,60], while
a giant cluster emerges at c ≥ 1, with the spectrum
presenting a mobility edge that separates localized and
extended eigenstates [24,26,60]. Level repulsion between

FIG. 1. Rate function ΨðpÞ
L ðkÞ of the fraction of eigenvalues

inside ð−∞; L� for Erdös-Rényi graphs with L ¼ −1 and average
connectivity c ¼ 3. The solid line is the population dynamics
results and the symbols correspond to numerical diagonalization
of matrices of sizes N ¼ 50 (yellow pentagons), N ¼ 100
(orange rhombic symbols), and N ¼ 300 (dark-red triangles),
using ensembles with 7 × 109, 6 × 108, and 2 × 108 samples,
respectively.
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neighboring eigenvalues is stronger for c ≥ 1 and, accord-
ingly, samples that increase the shifted index number
become less probable, resulting in rate functions that grow
faster for k > ktyp when compared to the left branch

k < ktyp. By rescaling cij as cij → cij=
ffiffiffi
c

p
, ΨðpÞ

L ðkÞ
becomes gradually more symmetric for increasing c > 1
[48], consistently with RIRM [6,11–18].
Next, we present results for the rate function ΨðaÞ

L ðkÞ
controlling the fraction of eigenvalues inside ½−L;L� for the
Anderson model on a RRG. The diagonal entries ϵ1;…; ϵN
are uniformly distributed in ½−W=2;W=2�. The statistics of
IN ½−L;L� depends crucially on how L scales with N [6].
Below, we comment on the possibility to apply our method
to study the local eigenvalue statistics, obtained by con-
sidering L ¼ Oð1=NÞ [5,61]. Here, we limit ourselves to
the regime where L ¼ Oð1Þ, independently of N, such that
ρðλÞ is not uniform over ½−L; L�. In this case, the asym-

metric nature of ΨðaÞ
L ðkÞ changes as a function of W,

similarly to ER graphs, as shown in Fig. 3. Repulsion
between neighboring levels becomes more prominent for
smaller W, which makes the fluctuations that tend to raise
IN ½−L;L� rarer. For W > Wc ≃ 17.5, all eigenstates are
localized and the level-spacing distribution corresponding
to the local eigenvalue statistics follows a Poisson law
[25,29,31], such that the eigenvalues behave as uncorre-
lated random variables. The rate function is closer to that of
a binomial distribution for large W, since ρðλÞ becomes
approximately uniform over ½−L;L�.
We finish by presenting results for the cumulant ratio

κ2=κ1 of IN ½−L;L� for the Anderson model on a RRG.
From Eq. (7), we have that κ2=κ1 ¼ σ2N=mN is the level
compressibility [9,42,43], since σ2N ¼ hI2

Ni − hINi2 is the
number variance and mN ¼ hINi is the mean number of
eigenvalues inside ½−L;L�. The analytical equations for κ1
and κ2 are shown in [48], including the case of W ¼ 0, for
which κ2=κ1 ¼ 0. The ratio κ2=κ1 allows us to distinguish

between Poisson level statistics, where σ2N ¼ mN and
κ2=κ1 ¼ 1, and the statistics of a rigid spectrum, where
neighboring eigenvalues strongly repel each other, yielding
σ2N ¼ OðlnNÞ and κ2=κ1 ¼ 0 [9,42,43].
Figure 4 displays population dynamics results for κ2=κ1 as

a function of W for fixed connectivity c ¼ 3. The level
compressibility κ2=κ1 is a continuous and monotonic func-
tion of W ≥ 0, which approaches κ2=κ1 → 1 only for
W → ∞. More interestingly, it fulfills 0 < κ2=κ1 < 1 for
any W > 0 and, consequently, the number of energy levels
inside ½−L;L� corresponding to extended eigenstates follows
a sub-Poissonian statistics. This is in contrast to the behavior
of the extended states in Gaussian random matrices [6],

FIG. 2. Population dynamics results for the rate function

ΨðpÞ
L ðkÞ of the fraction of eigenvalues inside ð−∞; L� for

Erdös-Rényi graphs with L ¼ −1 and different values of the
average connectivity c. The typical value ktyp of the shifted index
is defined in the main text.

FIG. 3. Population dynamics results for the rate function

ΨðaÞ
L ðkÞ of the fraction of eigenvalues inside ½−L; L� for the

Anderson model on a regular random graph with fixed con-
nectivity c ¼ 3, L ¼ 1 and different disorder strengths W. The
solid red line is the rate function of a binomial distribution, where
2L=W is the probability that an eigenvalue falls into ½−L; L�.

FIG. 4. Populations dynamics results (solid lines) for the cumu-
lant ratio κ2=κ1 of the number of eigenvalues within ½−L; L� for the
Andersonmodel on a regular randomgraphwith connectivityc ¼ 3
and different L: L ¼ 1=2 (dark red), L ¼ 1 (yellow) and L ¼ 2
(blue).We also present numerical diagonalization results (symbols)
for matrices of size N ¼ 1000 and average over 5 × 103 samples,
for L ¼ 1=2 and L ¼ 1, and over 104 samples for L ¼ 2. The
shaded area around each curve represents the error bars.
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where κ2=κ1 ¼ 0 for an interval of size 2L ¼ Oð1Þ, due to
the strong level repulsion. The population dynamics results
are free of finite size effects, as they arise from the solution of
Eqs. (13) and (16), valid for N → ∞.
Finally, we remark that our results do not allow us to draw

conclusions on the existence of an ergodic or nonergodic
transition in the extended phase of the Anderson model on a
RRG, sincewe have consideredL ¼ Oð1Þ, independently of
N. Such a transition can be studied, in principle, by
computing κ2=κ1 corresponding to the statistics of low-lying
energies fλig that fulfill 1=N ≪ λi ≪ ET , where ET ∝
ðlnNÞ−1 is the Thouless energy for the Anderson model
on a RRG [61]. This is achieved by setting L ¼ s=N, with
s ≫ 1 [61]. Although we do not study local eigenvalue
fluctuations, our approach opens the very interesting per-
spective that such a problem can be addressed analytically by
considering finite size corrections, following the ideas of
[62,63]. Work along this line is under way.
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