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In communication complexity, a number of distant parties have the task of calculating a distributed
function of their inputs, while minimizing the amount of communication between them. It is known that
with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions
in the communication complexity of some tasks. In this work, we study the role of the quantum
superposition of the direction of communication as a resource for communication complexity. We present a
tripartite communication task for which such a superposition allows for an exponential saving in
communication, compared to one-way quantum (or classical) communication; the advantage also holds
when we allow for protocols with bounded error probability.
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Quantum resources make it possible to solve certain
communication and computation problems more efficiently
than what is classically possible. In communication com-
plexity problems, a number of parties have to calculate a
distributed function of their inputs while reducing the
amount of communication between them [1,2]. The min-
imal amount of communication is called the complexity of
the problem. For some communication complexity tasks,
the use of shared entanglement and quantum communica-
tion significantly reduces the complexity as compared to
protocols exploiting shared classical randomness and
classical communication [3,4]. Important early examples
for which quantum communication yields an exponential
reduction in communication complexity over classical
communication are the distributed Deutsch-Jozsa problem
[5] and Raz’s problem [6].
Quantum computation and communication are typically

assumed to happen on a definite causal structure, where the
order of the operations carried on a quantum system is fixed
in advance. However, the interplay between general rela-
tivity and quantum mechanics might force us to consider
more general situations in which the metric, and hence the
causal structure, is indefinite. Recently, a quantum frame-
work has been developed with no assumption of a global
causal order [7–9]. This framework can also be used to
study quantum computation beyond the circuit model,
for instance using the “quantum switch” as a resource—
a qubit coherently controlling the order of the gates in a
quantum circuit [10]. It has recently been realized
experimentally [11].
It was shown that this new resource provides a reduction

in complexity to n black-box queries in a problem for
which the optimal quantum algorithm with fixed order
between the gates requires a number of queries that scales

as n2 [12]. The quantum switch is also useful in commu-
nication complexity; a task has been found for which the
quantum switch yields an increase in the success proba-
bility, yet no advantage in the asymptotic scaling of the
communication complexity was found [13]. Most gener-
ally, no information processing task is known for which the
quantum switch (or any other causally indefinite resource)
would provide an exponential advantage over causal
quantum (or classical) algorithms.
Here we find a tripartite communication complexity task

for which there is an exponential separation in communi-
cation complexity between the protocol using the quantum
switch and any causally ordered quantum communication
scheme. The task requires no promise on inputs and is
inspired by the problem of deciding whether a pair of
unitary gates commute or anticommute, which can be
solved by the quantum switch with only one query of
each unitary [14]. If the parties are causally ordered, the
number of qubits that needs to be communicated to
accomplish the task scales linearly with the number of
input bits, whereas the protocol based on the quantum
switch only requires logarithmically many communicated
qubits. This shows that causally indefinite quantum resour-
ces can provide an exponential advantage over causally
ordered quantum resources (i.e., entanglement and one-
way quantum channels).
The tripartite causally ordered communication scenario

we consider in this Letter is illustrated in Fig. 1. Alice and
Bob are respectively given inputs x ∈ X and y ∈ Y, taken
from finite sets X, Y. There is a third party, Charlie, whose
goal is to calculate a binary function fðx; yÞ of Alice’s and
Bob’s inputs, while minimizing the amount of communi-
cation between all three parties. We shall first assume that
communication is one-way only: from Alice to Bob and
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from Bob to Charlie. Furthermore, we grant the parties
access to unrestricted local computational power and
unrestricted shared entanglement. We will also consider
bounded error communication, in which the protocol must
succeed on all inputs with an error probability smaller
than ϵ.
In quantum communication, the parties communicate

with each other by sending quantum systems.
Conditionally on their inputs, the parties may apply general
quantum operations to the received system, and then send
this system out. We require that the parties’ local labo-
ratories receive a system only once from the outside
environment. We impose this requirement to exclude
sequential communication, in which the parties communi-
cate back and forth by sending quantum systems to each
other at different time steps. Alice’s laboratory has an input
and output quantum state, consisting of NAI

and NAO

qubits, respectively; similar notation is used for Bob’s and
Charlie’s systems. We seek to succeed at the communica-
tion task on all inputs with error probability lower than ϵ,
while minimizing the number of communicated qubits
N ≔ NAO

þ NBO
. The optimal causally ordered strategy is

for Bob to calculate fðx; yÞ and then communicate the
result to Charlie using one bit of communication; in this
case NAO

is a good lower bound for N.
The communication complexity of any causally ordered

tripartite communication complexity task can be bounded
by considering the bipartite task obtained by identifying
Bob and Charlie as a single party. Bearing this in mind, we
prove a tight lower bound on the quantum communication
complexity of an important family of one-way bipartite
deterministic (error probability ϵ ¼ 0) communication
tasks, which in turn implies a lower bound on the
communication complexity of causally ordered tripartite
tasks. This result appears in Theorem 5 of Ref. [15], but we
present a different proof here.
Lemma 1: For deterministic one-way evaluation of any

binary distributed function f∶X × Y → f0; 1g such that

∀x1, x2 ∈ X, with x1 ≠ x2, ∃y ∈ Y for which fðx1; yÞ ≠
fðx2; yÞ, the minimum Hilbert space dimension of the
system sent between two parties sharing an arbitrary
amount of entanglement is d ¼ ⌈

ffiffiffiffiffiffijXjp
⌉. Equivalently,

the minimum number of communicated qubits is ⌈ log2 d⌉.
Proof: We recall a well-known result of quantum

information [16], establishing that if Alice and Bob share
unlimited entanglement, the largest number of orthogonal
(perfectly distinguishable) states that Alice can transmit to
Bob by sending a d-dimensional system is d2. Therefore,
they can deterministically compute f if Alice sends a
system of Hilbert space dimension ⌈

ffiffiffiffiffiffijXjp
⌉.

Suppose by way of contradiction that the Hilbert
space dimension of the communicated system is only
ð⌈ ffiffiffiffiffiffijXjp

⌉ − 1Þ. The maximal number of orthogonal states
that can be transmitted by Alice to Bob is ð⌈ ffiffiffiffiffiffijXjp

⌉ − 1Þ2 <
jXj. Therefore, there exist inputs x1, x2 ∈ X such that the
corresponding states ρ1, ρ2 transmitted to Bob are not
orthogonal, and thus not perfectly distinguishable [17]. By
our assumption about the function f, there exists an input
y ∈ Y such that fðx1; yÞ ≠ fðx2; yÞ. Therefore, if Bob
receives the input y, he will need to distinguish between
ρ1 and ρ2 in order to output the function correctly, but this
cannot be done with zero error probability. ▪
The previous lemma establishes that for a very large

class of deterministic communication complexity tasks, it is
necessary for Alice to communicate all of her input to Bob.
In these cases, the only advantage achieved by causal one-
way quantum communication is a reduction by a constant
factor of 2 due to dense coding [18]. An important example
of this form is the inner product game [19,20]. Note that
Lemma 1 does not apply to relational tasks such as the
hidden matching problem [21], for which there is an
exponential separation between quantum and classical
communication complexity.
We now seek to establish a communication complexity

task for which indefinite causal order can be used as a
resource. In the following we assume that the parties have
local laboratories, and that they receive a quantum system
from the environment only once. They then perform a
general quantum operation on their system, and send it out.
An example of a noncausally ordered process is the
quantum switch [10], whose use in the context of commu-
nication complexity is shown in Fig. 2. Charlie is in the
causal future of both Alice and Bob, and an ancilla qubit
coherently controls the causal ordering of Alice and Bob;
both the target state and the control qubit are prepared
externally. Assume that Alice and Bob apply unitary gates
UA and UB to their respective input systems of N qubits.
The global unitary describing the evolution of the system
from Charlie’s point of view is

VðUA;UBÞ ¼ j0ih0jc ⊗ ðUBUAÞt
þ j1ih1jc ⊗ ðUAUBÞt; ð1Þ

FIG. 1. Causally ordered quantum communication complexity
scenario. Conditionally on their inputs x and y, Alice sends a state
ρx to Bob, who then applies a CPmap By and sends the system to
Charlie. The unlimited entanglement shared between the parties
is represented by jΨi. The optimal causally ordered protocol is
the one that minimizes the number of qubits in ρx (which is a
lower bound for the communication complexity of the task).
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where the index c denotes the control qubit, and the
unitaries UA and UB act on the target Hilbert space of
N qubits.
Using the quantum switch, one can determine whether

two unitaries UA, UB commute or anticommute with a
single query of each unitary, while at least one unitary must
be queried twice in the causally ordered case [14].
Explicitly, consider the quantum switch with the control
qubit initially in state jþic ¼ 1=

ffiffiffi
2

p ðj0ic þ j1icÞ and with
initial target state jψit. If A and B apply local unitaries UA
and UB, the resulting state after applying VðUA;UBÞ is

1ffiffiffi
2

p ðj0ic ⊗ UBUAjψit þ j1ic ⊗ UAUBjψitÞ: ð2Þ

If Charlie subsequently applies a Hadamard gate to the
control qubit, the resulting state is

1

2
ðj0ic ⊗ fUA;UBgjψit − j1ic ⊗ ½UA;UB�jψitÞ: ð3Þ

Suppose that Alice and Bob randomly choose unitaries
from a set U and that there exists a state jψit such that ∀U,
V ∈ U, either ½U;V�jψit ¼ 0 or fU;Vgjψit ¼ 0. Then
Eq. (3) shows that the quantum switch with initial target
state jψit and control qubit jþic as inputs allows Charlie to
discriminate between these two possibilities with certainty
by measuring the control qubit in the computational basis.
We now define a communication complexity task, the

exchange evaluation game EEn, for any integer n. In this
game, Alice and Bob are respectively given inputs
ðx; fÞ; ðy; gÞ ∈ Zn

2 × Fn, where Fn is the set of functions
over Zn

2 that evaluate to zero on the zero vector

Fn ¼ ff∶Zn
2 → Z2jfð0Þ ¼ 0g: ð4Þ

Charlie must output

EEnðx; f; y; gÞ ¼ fðyÞ ⊕ gðxÞ; ð5Þ

where the symbol⊕ denotes addition modulo 2. This game
can be interpreted as the sum modulo 2 of two parallel
random access codes [22,23].
We first construct an encoding of the inputs ðx; fÞ; ðy; gÞ

in terms of local n-qubit unitaries that all commute or
anticommute; we then use the previous observation to
conclude that the switch succeeds deterministically at this
task with n qubits of communication. We start with some
definitions. The group of Pauli X operators on n qubits is
defined as

XðxÞ ¼ Xx1
1 ⊗ Xx2

2 ⊗ � � � ⊗ Xxn
n ; ð6Þ

where xi is the ith component of the binary vector x ∈ Zn
2.

Here, Xi is the single qubit Pauli X operator acting on the
ith qubit, and X0

i ¼ Ii is the single qubit identity matrix.
We associate to every f ∈ Fn a diagonal matrix

DðfÞ ¼
X

z∈Zn
2

ð−1ÞfðzÞjzihzj; ð7Þ

where jzi is the state such that Zijzi ¼ ð−1Þzi jzi, with Zi
the single qubit Pauli Z operator acting on qubit i. The set
fDðfÞgf∈Fn

consists of all diagonal matrices with entries
�1 in the computational basis, such that the first entry
is þ1.
We define the set of unitaries

Un ¼ fXðxÞDðfÞjðx; fÞ ∈ Zn
2 × Fng; ð8Þ

which has dimension

jUnj ¼ 22
nþn−1: ð9Þ

This superexponential scaling of jUnj is essential to
establish a communication advantage with the quantum
switch. Also note that

XðxÞDðfÞXðyÞDðgÞj0i ¼ ð−1ÞfðyÞjx ⊕ yi: ð10Þ

Therefore, when acting on the n-qubit input state j0i, the
elements of Un all commute or anticommute with each
other, and

½XðxÞDðfÞ;XðyÞDðgÞ�j0i ¼ 0; if ð−1ÞfðyÞ ¼ ð−1ÞgðxÞ
fXðxÞDðfÞ;XðyÞDðgÞgj0i ¼ 0; if ð−1ÞfðyÞ ¼ ð−1ÞgðxÞþ1:

ð11Þ

Therefore, the game is equivalent to determining whether
the corresponding unitaries XðxÞDðfÞ and XðyÞDðgÞ

FIG. 2. Communication complexity setup using the quantum
switch. A qubit in the state 1=

ffiffiffi
2

p ðj0ic þ j1icÞ coherently controls
the path taken by a system of N qubits in initial state jψit. One
path goes first through Alice’s lab and then Bob’s, while the other
path goes first through Bob’s lab and then Alice’s. Alice and Bob
are given classical inputs x ∈ X, y ∈ Y, and Charlie (using the
control qubit) computes a binary function of their inputs fðx; yÞ.
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commute or anticommute when applied to the state j0i. By
the discussion following Eq. (3), this problem can be solved
deterministically by Charlie using the quantum switch with
OðnÞ qubits of communication from Alice to Bob, with a
strategy consisting of applying the unitary corresponding to
their input according to Eq. (8).
We now show that the exchange evaluation game

satisfies the conditions of Lemma 1; this will allow us
to conclude that for deterministic (ϵ ¼ 0) evaluation in the
one-way causally ordered case, EEn requires an amount of
communicated qubits that grows exponentially with n.
Proposition 2: For every ðx1; f1Þ, ðx2; f2Þ ∈ Zn

2 × Fn,
such that ðx1;f1Þ≠ ðx2;f2Þ, there exists ðy; gÞ ∈ Zn

2 × Fn
such that EEnðx1; f1; y; gÞ ≠ EEnðx2; f2; y; gÞ.
Proof: First note that EEnðx1;f1;y;gÞ≠EEnðx2;f2;y;gÞ

if and only if

f1ðyÞ ⊕ f2ðyÞ ⊕ gðx1Þ ⊕ gðx2Þ ¼ 1: ð12Þ
Then, since ðx1; f1Þ ≠ ðx2; f2Þ, either x1 ≠ x2 or f1 ≠ f2
holds. We check that the conditions of the lemma are
satisfied in both cases.
(i) Case where x1 ≠ x2: Suppose without loss of general-

ity that x1 ≠ 0 and define g as the function such that
gðx1Þ ¼ 1 and gðzÞ ¼ 0, ∀z ≠ x1. Also, because f1,
f2 ∈ Fn, f1ð0Þ ¼ f2ð0Þ ¼ 0. Therefore, the function g
we just defined and y ¼ 0 satisfy Eq. (11).
(ii) Case where f1 ≠ f2: Let y ∈ Zn

2 be a vector for
which f1 and f2 differ, so that f1ðyÞþf2ðyÞ¼1. Then this
y and the zero function gðxÞ¼0∀x satisfies Eq. (11). ▪
According to Eq. (9), the dimension of the set

of inputs to EEn is jUnj ¼ 22
nþn−1. Direct application of

Proposition 2 with Lemma 1 establishes that the number
of qubits of communication required for deterministic
success in the causally ordered case is 1

2
log2jUnj ¼

1
2
ð2n þ n − 1Þ ¼ Ωð2nÞ, using dense coding. In compari-

son, we have seen that with the quantum switch as a
resource, we need only n qubits of communication between
Alice and Bob to calculate this function. We thus conclude
that for the exchange evaluation game, there is an expo-
nential separation in the deterministic communication
complexity of EEn.
Note that with two-way (classical) communication, it is

possible to solve the exchange evaluation gamewith 2nþ 2
bits of communication, simply by having Alice and Bob
send their vectors x, y to the other party, followed by local
evaluation of fðyÞ and gðxÞ by the parties and communi-
cation of the result to Charlie. We emphasize that once we
allow two-way communication, the quantum advantage can
also disappear in traditional quantum communication
complexity (comparing causally ordered quantum commu-
nication with classical communication): this is the case for
the distributed Deutsch-Jozsa problem [5], but not for Raz’s
problem [24].
For causally ordered communication complexity tasks,

the exponential quantum-classical separation does not

always continue to hold when allowing for protocols to
have a small but nonzero error probability ϵ > 0. Indeed,
looking at early examples of tasks, the advantage disap-
pears for the distributed Deutsch-Jozsa problem [5], while
it remains for Raz’s problem [6]. The Supplemental
Material [25] presents a proof, based on VCdimension
[26], that the one-way quantum communication complexity
with bounded error for EEn scales as Ωð2nÞ, and thus that
the exponential separation in communication complexity
due to superposition of causal ordering persists when
allowing for a nonzero error probability.
To show that it is possible to operationally distinguish

quantum control of causal order from two-way communi-
cation one could introduce counters at the output ports of
Alice’s and Bob’s laboratories, whose role is to count the
number of uses of the channels. Such an argument has
already been made in Ref. [12] to justify a computational
advantage. We can model a counter as a qutrit initially in
the state j0i, whose evolution when a system exits the
laboratory is jii → jiþ 1mod 3i, where i ∈ f0; 1; 2g.
Then, for both one-way communication and the quantum
switch, the counters of Alice and Bob will be in the state j1i
at the end of the protocol; for genuine two-way commu-
nication, at least one of these counters will be in the final
state j2i. Therefore, the expectation value of the observ-
ables N ¼ P

2
i¼0 jiihij for the counters allows us to dis-

tinguish realizations of the quantum switch, such as [11],
from two-way quantum communication.
In conclusion, we have found a communication complex-

ity task, the exchange evaluation game, for which a quantum
superposition of the direction of communication—the
quantum switch—results in an exponential saving in com-
munication when compared to causally ordered quantum
communication. An interesting feature of this game is that it
is not a promise game, as are most known tasks for which
quantum resources have an exponential advantage [4].
In future work, it would be interesting to explore

other information processing tasks for which the quantum
switch—or other causally indefinite processes—may yield
interesting advantages. For example, one could look at
the uses of the quantum switch for secure distributed
computation [27–30]. Indeed, imagine that Alice and
Bob both want to learn about the value of EEn, in such
a way that the other party does not learn about their inputs.
They could achieve this goal by enlisting a third party and
using the quantum switch with the EEn protocol.

We thank Ashley Montanaro for pointing out Ref. [15] to
us, used to establish the bounded-error advantage. We
acknowledge support from the European Commission
project RAQUEL (No. 323970); the Austrian Science
Fund (FWF) through the Special Research Programme
FoQuS, the Doctoral Programme CoQuS and Individual
Project (No. 2462), and the John Templeton Foundation.
P. A. G. is also supported by FQRNT (Quebec).

PRL 117, 100502 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

2 SEPTEMBER 2016

100502-4



*Corresponding author.
philippe.guerin@univie.ac.at

[1] A. C.-C. Yao, in Proceedings of the 11th Annual ACM
Symposium on Theory of Computing (ACM, New York,
1979), pp. 209–213.

[2] E. Kushilevitz and N. Nisan, Communication Complexity
(Cambridge University Press, Cambridge, 1997).

[3] A. C.-C. Yao, in Proceedings of the 34th Annual Symposium
on the Foundations of Computer Science (IEEE, New York,
1993), pp. 352–361.

[4] H. Buhrman, R. Cleve, S. Massar, and R. De Wolf,
Nonlocality and communication complexity, Rev. Mod.
Phys. 82, 665 (2010).

[5] H. R. Buhrman, R. Cleve, and A. Wigderson, in Proceed-
ings of the 30th Annual ACM Symposium on Theory of
Computing (ACM, New York, 1999), pp. 63–68.

[6] R. Raz, in Proceedings of the Thirty-first Annual ACM
Symposium on Theory of Computing, STOC ’99 (ACM,
New York, 1999), pp. 358–367.

[7] O. Oreshkov, F. Costa, and Č. Brukner, Quantum
correlations with no causal order, Nat. Commun. 3, 1092
(2012).

[8] M. Araújo, C. Branciard, F. Costa, A. Feix, C. Giarmatzi,
and Č. Brukner, Witnessing causal nonseparability, New J.
Phys. 17, 102001 (2015).

[9] O. Oreshkov and C. Giarmatzi, Causal and causally
separable processes, arXiv:1506.05449.

[10] G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron,
Quantum computations without definite causal structure,
Phys. Rev. A 88, 022318 (2013).

[11] L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I.
Alonso Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema,
Č. Brukner, and P. Walther, Experimental superposition of
orders of quantum gates, Nat. Commun. 6, 7913 (2015).

[12] M. Araújo, F. Costa, and Č. Brukner, Computational
Advantage from Quantum-Controlled Ordering of Gates,
Phys. Rev. Lett. 113, 250402 (2014).

[13] A. Feix, M. Araújo, and Č. Brukner, Quantum superposition
of the order of parties as a communication resource, Phys.
Rev. A 92, 052326 (2015).

[14] G. Chiribella, Perfect discrimination of no-signalling chan-
nels via quantum superposition of causal structures, Phys.
Rev. A 86, 040301 (2012).

[15] H. Klauck, in Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing (ACM, New York,
2000), pp. 644–651.

[16] P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland,
and W. K. Wootters, Classical information capacity of a
quantum channel, Phys. Rev. A 54, 1869 (1996).

[17] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition, 10th ed.
(Cambridge University Press, Cambridge, England, 2011).

[18] C. H. Bennett and S. J. Wiesner, Communication via One-
and Two-Particle Operators on Einstein-Podolsky-Rosen
States, Phys. Rev. Lett. 69, 2881 (1992).

[19] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp, Quantum
entanglement and the communication complexity of the
inner product function, Lect. Notes Comput. Sci. 1509, 61
(1998).

[20] A. Nayak and J. Salzman, in Proceedings of 34th ACM
STOC (ACM, New York, 2002), pp. 698–704.

[21] Z. Bar-Yossef, T. S. Jayram, and I. Kerenidis, in Proceed-
ings of the Thirty-sixth Annual ACM Symposium on Theory
of Computing, STOC ’04 (ACM, New York, 2004),
pp. 128–137.

[22] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, in
Proceedings of the Thirty-first Annual ACM Symposium on
Theory of Computing, STOC ’99 (ACM, New York, 1999),
pp. 376–383.

[23] A. Nayak, FOCS ’99 Proceedings of the 40th Annual
Symposium on Foundations of Computer Science (IEEE
Computer Society, Washington, 1998), pp. 369–376.

[24] B. Klartag and O. Regev, in Proceedings of the Forty-third
Annual ACM Symposium on Theory of Computing,
STOC ’11 (ACM, New York, 2011), pp. 31–40.

[25] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.117.100502 for a proof
of the exponential communication complexity advantage
with bounded error probability.

[26] V. N. Vapnik and A. Y. Chervonenkis, On the uniform
convergence of relative frequencies of events to their
probabilities, Theory Probab. Appl. 16, 264 (1971).

[27] A. C. Yao, FOCS 23rd Annual Symposium on Foundations
of Computer Science (1982), pp 160–164, http://ieeexplore
.ieee.org/xpl/articleDetails.jsp?arnumber=4568388.

[28] H.-K. Lo, Insecurity of quantum secure computations, Phys.
Rev. A 56, 1154 (1997).

[29] H. Buhrman, M. Christandl, and C. Schaffner, Complete
Insecurity of Quantum Protocols for Classical Two-Party
Computation, Phys. Rev. Lett. 109, 160501 (2012).

[30] W. Liu, C. Liu, H. Wang, and T. Jia, Quantum private
comparison: A review, IETE Tech Rev 30, 439 (2013).

PRL 117, 100502 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

2 SEPTEMBER 2016

100502-5

http://dx.doi.org/10.1103/RevModPhys.82.665
http://dx.doi.org/10.1103/RevModPhys.82.665
http://dx.doi.org/10.1038/ncomms2076
http://dx.doi.org/10.1038/ncomms2076
http://dx.doi.org/10.1088/1367-2630/17/10/102001
http://dx.doi.org/10.1088/1367-2630/17/10/102001
http://arXiv.org/abs/1506.05449
http://dx.doi.org/10.1103/PhysRevA.88.022318
http://dx.doi.org/10.1038/ncomms8913
http://dx.doi.org/10.1103/PhysRevLett.113.250402
http://dx.doi.org/10.1103/PhysRevA.92.052326
http://dx.doi.org/10.1103/PhysRevA.92.052326
http://dx.doi.org/10.1103/PhysRevA.86.040301
http://dx.doi.org/10.1103/PhysRevA.86.040301
http://dx.doi.org/10.1103/PhysRevA.54.1869
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1007/3-540-49208-9
http://dx.doi.org/10.1007/3-540-49208-9
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.100502
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.100502
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.100502
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.100502
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.100502
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.100502
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.100502
http://dx.doi.org/10.1137/1116025
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4568388
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4568388
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4568388
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4568388
http://dx.doi.org/10.1103/PhysRevA.56.1154
http://dx.doi.org/10.1103/PhysRevA.56.1154
http://dx.doi.org/10.1103/PhysRevLett.109.160501
http://dx.doi.org/10.4103/0256-4602.123129

