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Implementing a qubit quantum computer in continuous-variable systems conventionally requires the
engineering of specific interactions according to the encoding basis states. In this work, we present a
unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary
encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be
implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests.
Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and
logical qubits with different encodings can be brought to interact without decoding. We also propose a
possible implementation of the required operations by using interactions that are available in a variety of
continuous-variable systems. Our work separates the “hardware” problem of engineering quantum-
computing-universal interactions, from the “software” problem of designing encodings for specific
purposes. The development of quantum computer architecture could hence be simplified.
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Introduction.—In a wide range of quantum computa-
tional tasks, the basic quantity of quantum information is a
two-level system that can be prepared in an arbitrary
superposition state (qubit) [1]. If the quantum system
consists of individually addressable energy eigenstates,
such as the internal levels in trapped atoms or the
polarization states of electron spins [2], the qubit bases
are most trivially represented by two of such states. On the
other hand, there are also quantum systems, such as optical
modes [3], mechanical oscillators [4], quantized motion of
trapped ions [5], and spin ensembles [6,7], that consist
of an abundance of evenly spaced energy levels. In these
systems, usually referred to as continuous-variable (CV)
systems, addressing a particular energy eigenstate is usu-
ally challenging. There is thus no trivial CV representation
of a qubit.
Nevertheless, the large Hilbert space of each degree

of freedom, usually called a quantum mode (qumode),
provides the flexibility for designing a qubit encoding for
specific purposes. Each popular encoding, for which the
computational basis states could be Fock states, coherent
states, Cat states, superpositions of squeezed states, or
else [8–22], has its own strength in, e.g. efficiency of
initialization, error-tolerance, or measurement accuracy.
Conventionally, implementing the computing logical proc-
esses requires the engineering of dedicated interactions
according to the characteristics of the encoding basis,
which may require a specific physical setup, i.e., hardware,
that cannot be changed as easily as the choice of encoding.
The variety of encoding diversifies the architecture of CV
quantum computers, and precludes the strengths of each
encoding to be shared with all others.
In this work, we describe two unified schemes for

universal quantum computing with any CV encoding, in

the sense that all logical processes are independent of the
encoding state in each qumode. Specifically, a qubit is
stored in the parity of two or four qumodes. All logical
processes, which include computational state initialization,
universal set of logic gates, and state readout, can be
implemented by the preparation of encoding basis states,
exponential-swap operations, and swap tests. We show
how the required operations can be implemented with
realistic physical interactions in CV systems. Our schemes
inherently allow logical qubits with different encoding
to be brought to interact without decoding; thus, the
strength of different encodings can be utilized in the same
computation. Additionally, the logical states lie in the CV
decoherence-free subsystem, so the quantum information is
robust against spatially collective noise.
Dual-rail scheme.—We begin by describing the simpler

scheme in which each logical qubit consists of two
qumodes. For any encoding with the orthogonal single-
mode basis states j0Li and j1Li, where h0Lj1Li ¼ 0, we
define the dual-rail logical (D-logical) basis states as
j0Di≡ j0L1Li and j1Di≡ j1L0Li. A computation involv-
ing N logical qubits thus requires 2N qumodes. We denote
that the nth D-logical qubit is composed of the (2n − 1)th
and the 2nth qumodes. We assume the ability to efficiently
prepare j0Li and j1Li, and hence the initial computational
state j0Di⊗N .
In the specific encoding of lowest energy Fock states, the

D-logical states resemble the dual-rail single photon qubit
in optical quantum computers [8,10]. Nevertheless, the
logic gate implementations of those schemes rely heavily
on the property of the Fock basis states. In stark contrast,
the logic gates illustrated in this work are constructed
from swap-based operations that are independent of the
encoding bases. By definition, the swap between the
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qumodes i and j, Ŝij, is defined by the action ŜijâiŜ
†
ij ¼ âj

for any i and j, where âi is the annihilation operator
of qumode i. The D-logical basis states are flipped by
swapping the qumodes, i.e., Ŝ2n−1;2nj0Din ¼ j1Din, so a
swap plays the role of the Pauli-X operation in the
D-logical basis, i.e., Ŝ2n−1;2n ¼ X̂Dn

.
Arbitrary rotation on the Y-Z plane of the D-logical

Bloch sphere is accomplished by a two-mode exponential-
swap (E-swap) operation [23,24], i.e.,

expðiθŜ2n−1;2nÞ ¼ expðiθX̂Dn
Þ: ð1Þ

An entangling gate between two D-logical qubits could be
a four-mode E-swap,

expðiθŜ2n−1;2nŜ2m−1;2mÞ ¼ expðiθX̂Dn
X̂Dm

Þ: ð2Þ

The universal set of logic gates can be completed by a
phase-shift gate, expðiϕẐDÞ [1]. Unfortunately, we find that
such an operation cannot be coherently implemented by
any combination of swap. Nevertheless, if a small gate error
is permitted, the phase-shift gate can be efficiently imple-
mented by the quantum machine-learning techniques [23].
Consider that an ancillary qumode c is prepared in j0Lic.
After an E-swap operation is applied with the second
qumode of the target D-logical qubit, the ancilla is then
disposed. For a small parameter ϵ, the operation can be
approximated as

Trcfe−iϵϕŜc;2nðj0Lih0Ljc ⊗ ρDn
ÞeiϵϕŜc;2ng

≈ ðe−iϵϕj0Lih0LjÞ2nρDn
ðeiϵϕj0Lih0LjÞ2n þOðϵ2Þ: ð3Þ

The operation induces a phase shift ϵϕ only on the
D-logical qubit state j1Di. Repeating the process for 1=ð2ϵÞ
times, we obtain the gate operation ðe−i2ϕj0Lih0LjÞ2n ¼
e−iϕ expðiϕẐDn

Þ, with an overall error that scales as OðϵÞ.
After computation, the D-logical qubit is read out by a

swap test [25]. Specifically, a controlled-swap operation,
Ĉ2n−1;2n ≡ j0ih0jA ⊗ I2n−1;2n þ j1ih1jA ⊗ Ŝ2n−1;2n, where I
is the identity operator, is applied to the nth D-logical
qubit and an auxiliary qubit A that is prepared in
jþiA ≡ ðj0iA þ j1iAÞ=

ffiffiffi
2

p
. The total state becomes

Ĉ2n−1;2njþiAjψDin ¼ jþiAðIDn
þ X̂Dn

ÞjψDin=2
þ j−iAðIDn

− X̂Dn
ÞjψDin=2; ð4Þ

for any D-logical state jψDi. Measuring the auxiliary
qubit in the XA basis is effectively a projective Pauli-X
measurement on the D-logical qubit.
Quad-rail scheme.—The main drawback of the dual-rail

scheme is the incoherent implementation of the phase-shift
gate that requires a surplus of operations and resources.
Here we describe a quad-rail scheme in which even
the phase-shift gate can be implemented coherently. We

define the quad-rail logical (Q-logical) basis states as
j0Qi≡ j þD −Di and j1Qi≡ j −D þDi, where each
consists of two D-logical qubits in either of j�Di≡
ðj0L1Li � j1L0LiÞ=

ffiffiffi
2

p
. We note that the scheme can be

viewed as the concatenation of a variant of the exchange-
interaction code on CV encodings [26,27].
A computation with N Q-logical qubits requires 4N

qumodes. To initialize the computational state, the qum-
odes are first prepared in either of the encoding basis states,
and then grouped into 2N pairs that each consists of one
j0Li and one j1Li. A swap test is then applied to project
each pair of qumodes to either jþDi or j−Di. When N is
large, the probability of obtaining sufficient jþDi and j−Di
for initializing ð1 − δÞN qubits of j0Qi is exponentially
close to unity in terms of N.
The nth Q-logical qubit is composed of the (4n − 3)th to

4nth qumodes. Swapping the first two qumodes of a
Q-logical qubit will induce a phase of −1 only if the state
is j1Qi; this operation plays the role of the Q-logical
Pauli-Z operator, i.e., Ŝ4n−3;4n−2 ¼ ẐQn

. Hence the single
qubit phase-shift gate and the entangling conditional-phase
gate can be implemented respectively by the two-mode and
four-mode E-swap operations, i.e.,

expðiϕŜ4n−3;4n−2Þ ¼ expðiϕẐQn
Þ; ð5Þ

expðiϕŜ4n−3;4n−2Ŝ4m−3;4m−2Þ ¼ expðiϕẐQn
ẐQm

Þ: ð6Þ
The Q-logical basis states are flipped by swapping the

first two qumodes with the last two qumodes of aQ-logical
qubit. This operation plays the role of theQ-logical Pauli-X
operator, i.e., Ŝ4n−3;4n−1Ŝ4n−2;4n ¼ X̂Qn

. Hence the rotation
gate on the Q-logical Y-Z plane can be implemented by a
four-mode E-swap operation,

expðiθŜ4n−3;4n−1Ŝ4n−2;4nÞ ¼ expðiθX̂Qn
Þ: ð7Þ

Equations (5), (6), and (7) complete the coherent
implementation of the universal logic gate set in the
Q-logical basis.
Similar to the dual-rail scheme, a Q-logical qubit is also

read out by a swap test. An auxiliary qubit is first prepared
in jþiA, and a controlled-swap operation is then applied to
the first two qumodes of a Q-logical qubit, i.e., Ĉ4n−3;4n−2.
The total state becomes

Ĉ4n−3;4n−2jþiAjψQin ¼ jþiAðIQn
þ ẐQn

ÞjψQin=2
þ j−iAðIQn

− ẐQn
ÞjψQin=2: ð8Þ

Measuring the auxiliary qubit in the XA basis is effectively
a projective Pauli-Z measurement on the Q-logical qubit.
Before proceeding, we emphasise that the logical proc-

esses of both the dual-rail and quad-rail schemes are
implemented by the same set of operations: basis state
preparations, two-mode and four-mode E-swap operations,
and swap-tests. As a comparison, implementing aD-logical
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phase-shift gate requires excessive operations and ancillae,
but eachD-logical qubit is composed of fewer qumodes, so
the dual-rail scheme could be advantageous for a class of
encodings that the phase-shift operation is efficient. On the
other hand, although each Q-logical qubit involves more
qumodes, all logic gates can be implemented coherently for
the Q-logical qubits.
Computation with different encodings.—All the logical

processes in the two schemes are constructed without
specifying the encoding in each qumode. Therefore, the
sequence of physical operations that synthesizes a compu-
tational circuit is the same, irrespective of the encoding
basis states j0Li and j1Li. In fact, the computation can be
conducted by a party that has no knowledge about the basis
states except their orthogonality.
Examples of popular encoding basis states are shown in

Table I. The encodings are developed for their own
purposes, but each of them inevitably suffers from certain
drawbacks. For instances, Fock state encoding [8–11] and
coherent state encoding [12,13] enable efficient state
preparation and linear-optical logic gates, but some logic
gates are probabilistic and their implementations require
stringent detection efficiencies. Cat state encoding enables
quantum error correction against photon loss [14–16], but
implementing the logic gates may require slow Zeno
dynamics. The Gottesman-Kitaev-Preskill (GKP) protocol
enables fault-tolerant quantum computating and logical
states to be read out by accurate homodyne detection, but
the basis states are superpositions of squeezed states of
which the construction is technically challenging [17,18].
Remarkably, our schemes inherently allow logical qubits

with different encodings to be brought to interact in the
same computation, without the necessity to decode the
quantum information. This is because the four-mode
E-swap operation, which implements the logical entangling
gates in Eqs. (2) and (6), preserves the computational
subspace of each D-logical qubits, i.e.,

½expðiθŜ2n;2n−1Ŝ2m;2m−1Þ; IDn
ðL1Þ ⊗ IDm

ðL2Þ� ¼ 0; ð9Þ

where IDðLiÞ≡ j0Li
1Li

ih0Li
1Li

j þ j1Li
0Li

ih1Li
0Li

j is the
projection operator to the computational subspace of a
D-logical qubit with the encoding Li. Because each
Q-logical qubit is composed of two D-logical qubits, the
property in Eq. (9) also preserves the computational sub-
space of Q-logical qubits.
In the dual-rail scheme, the same encoding is required

only for the two qumodes in each D-logical qubit and
the Oð1=ϵÞ ancillae required for implementing the phase-
shift gate. In the quad-rail scheme, it is sufficient for the
four qumodes in each Q-logical qubit to have the same
encoding.
The logical processes of both the dual- and quad-rail

schemes are sufficiently but not necessarily implemented
by the swap-based operations; specific properties of an
encoding could be used to achieve more robust or faster
logical processes. For example, aD-logical qubit with GKP
encoding can be readout by homodyne detection, which
could be more accurate than the qubit measurement in a
swap test. Thus the strengths of different encodings can be
utilized if each encoding is employed in the part of
computation for which it is best adopted. For instance,
coherent states are efficiently created as undetected logical
ancillae, cat states are best for transmitting quantum
information through lossy links, and the final result is
accurately read out from GKP qubits.
Decoherence free subsystem.—In CV quantum compu-

tation, leakage error is a major form of error as the
environmental noise typically projects the encoded state
out of the computational subspace. In some CV systems,
the noise is the same in each qumode. Examples include the
background magnetic field experienced by spin ensembles,
and the fluctuation of the trapping potential of an ion chain.
The decoherence effect of such collective noise can be
reduced by storing the quantum information in the
decoherence-free subsystem (DFS) (also referred to as
noiseless subsystems [31]) [32–34]. As a merit of our
schemes, both the D-logical and Q-logical states are
inherently within the DFS. To the best of our knowledge,
our schemes are also the first explicit protocols that
incorporate DFS in CV systems.
The key idea is that collective noise commutes with the

swap operation, i.e., ½Ûi ⊗ Ûj; Ŝij� ¼ 0, where Ûi and Ûj

are the same unitary noise acting on different qumodes, so
it also commutes with the E-swap and controlled-swap
operations that constitute the logical processes. For a
computation that is implemented by a physical operation
U, the physical state that has suffered from subsequent
collective noise is given by

Û⊗MUjΨ0i ¼ UÛ⊗MjΨ0i; ð10Þ

where jΨ0i is the M-mode total initial state of the
computational and the ancillary qumodes. The right-hand
side of Eq. (10) can be viewed as the implementation of the
same computation with the redefined encoding states,

TABLE I. Examples of single-mode basis states of different
encodings. The lowest energy Fock state is defined as âj0i ¼ 0.
A coherent state with an amplitude α is given by jαi ¼ D̂ðαÞj0i,
where D̂ðαÞ is the displacement operator [28]. We consider only
the case jαj ≫ 1 [29]. jxiq is an infinitely squeezed state as well
as an eigenstate of the q-quadrature, i.e., q̂jxiq ¼ xjxiq. We have
neglected the normalization in the states.

Encoding j0Li j1Li
Fock state [8–11,30] j0i â†j0i
Coherent state [12,13] jαi j − αi
Cat state [14–16] jαi þ j − αi jiαi þ j − iαi
GKP [17,18]

P∞
n¼−∞ j2niq

P∞
n¼−∞ j2nþ 1iq
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j0L0 i ¼ Ûj0Li and j1L0 i ¼ Ûj1Li. Because both U and the
swap-test-based logical readout are the same for all
encodings, the collective noise does not decohere the
quantum information nor does it affect the computation
result.
The DFS does not only protect the quantum informa-

tion in the storage, it could also offer the protection
during the logic gate operations. If the controlled-swap,
two-mode, and four-mode E-swap can be respectively
implemented by the Hamiltonians ĤC ∝ Ĉ, Ĥ2 ∝ Ŝ, and
Ĥ4 ∝ Ŝ ⊗ Ŝ, then the collective noise commutes with
the logical processes, i.e., ½Û⊗M; ĤC� ¼ ½Û⊗M; Ĥ2� ¼
½Û⊗M; Ĥ4� ¼ 0, and so the quantum information always
lies within the DFS.
Finally, we discuss about the order of correlation that is

tolerable by the DFS. In the quad-rail scheme, because the
same encoding is required only in each Q-logical qubit,
Û has to be identical among the four qumodes in the
same Q-logical qubit. On the other hand, although each
D-logical qubit consists of only two qumodes, the same
noise has to be experienced also by the Oð1=ϵÞ ancillae for
implementing accurate phase-shift gates.
Quantum error correction.—Some encodings enable

quantum error correction (QEC) in each qumode
[14,15,17]. For an error channel E with an error δ, a
QEC process R can recover any encoding state jψi, up to
an error that scales as a higher order of δ, i.e.,
RfEfjψihψ jgg ≈ jψihψ j þOðδ2Þ. Such a QEC process
is applicable to correct errors in the D-logical qubit,
which is essentially a two-mode encoding state, jψi ¼
c00j0L0Li þ c01j0L1Li þ c10j1L0Li þ c11j1L1Li, with the
constraint c00 ¼ c11 ¼ 0. Similarly, QEC is also applicable
in the quad-rail scheme, because each Q-logical qubit
stores quantum information in a subspace of the four-
mode encoding states. Additionally, other noises and
implementation errors that are not rectified by single
qumode QEC could be tackled by concatenating well-
established qubit QEC codes on multiple dual- and quad-
rail logical qubits [35].
Physical implementation.—The most ideal implemen-

tation of the E-swap and the controlled-swap operations
is to apply the exchange interactions in the form of
Ĥ2 ∝ Ŝ, Ĥ4 ∝ Ŝ ⊗ Ŝ, and ĤC ∝ Ĉ, so that the computa-
tion is always conducted within the DFS. To the best of
our knowledge, however, such interactions have not been
engineered in any CV system yet. Alternatively, we
propose an implementation that employs only realistic
interactions, at the expense that the quantum information
may leave the DFS during the operations.
We require an auxiliary qubit A that can be rotated on the

Y-Z plane of the Bloch sphere, i.e., R̂AðθÞ ¼ expðiθX̂AÞ, to
act as the control in the controlled-swap operation. Initially,
the qubit is prepared as jþiA. The E-swap operations can be
coherently implemented as [24],

ĈijR̂AðθÞĈijjþiAjΨiij ¼ jþiAeiθŜij jΨiij; ð11Þ

ĈijĈklR̂AðθÞĈijĈkljþiAjΨiijkl ¼ jþiAeiθŜijŜkl jΨiijkl; ð12Þ
where jΨiij (jΨiijkl) is the state of the qumodes i,
j (i, j, k, l). The circuit diagram of the above procedure
is shown in Fig. 1.
The implementation of the controlled-swap operation is

best understood by expressing it as a unitary,

Ĉij ¼ e−ðπ=4Þðâiâ
†
j−â

†
i âjÞeiðπ=2ÞðIA−ẐAÞâ†i âieðπ=4Þðâiâ

†
j−â

†
i âjÞ: ð13Þ

This operation can be implemented by applying in a correct
order the controlled-phase-shift interaction ĤK ∝ ẐAâ†â,
and passive linear mode transformations that include beam
splitting, ĤBS ∝ âiâ

†
j þ â†i âj, and phase shifting, ĤP ∝

â†â [25,36]. While the linear transformations are prevalent,
the interaction in the form of ĤK can also be found in many
CV systems, such as the dispersive coupling between a
transmon qubit and a cavity [37], and the second-order
magnetic field gradient that couples a diamond nitrogen-
vacancy center with a mechanical oscillator [38].
Conclusion and discussions.—In this work, we have

described a unified formalism to conduct universal quan-
tum computation independently of the specific CV encod-
ing of the qubit. By storing the quantum information in the
parity of two or four qumodes, all logical processes can be
implemented by basis state preparations, exponential-swap
operations, and swap tests. Both theD- andQ-logical states
are inherently the decoherence-free subsystem of the
qumodes, so the stored quantum information is decoupled
from collective noise. Our schemes allow logical qubits
with different encodings to interact without decoding. This
unprecedented flexibility would allow the strengths of
different encodings to be utilized in the same computation,
when each encoding is employed in the computational
process that it is best adopted, e.g. storage, logical trans-
formation, transmission, or readout.
We have proposed an implementation of the required

exponential-swap and controlled-swap operations that
involves only realistic interactions. Nevertheless, we
encourage experimentalists to engineer in CV systems the
exchange interactions Ĥ2 ∝ Ŝ, Ĥ4 ∝ Ŝ ⊗ Ŝ, and ĤC ∝ Ĉ,

FIG. 1. Circuit diagram of Eq. (11) for implementing two-mode
(blue only) and four-mode (blueþ red) E-swap. The ancilla qubit
remains in jþi after the operations.
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for implementing the computing processes within the DFS,
in addition to the potential applications in quantum learning
machines [23,24,39]. We anticipate possibilities in concat-
enating existing nonlinear Hamiltonians [40] or applying
non-Gaussian measurements [41,42]. In any case, once the
exponential-swap and the controlled-swap operations are
realized, they are sufficient for conducting universal quan-
tum computation with any encoding. Therefore, the encod-
ing can be designed with a greater flexibility. Our scheme
could hence facilitate the development of the hybrid con-
tinuous-variable quantum computers [28,41,42].
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