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We experimentally study the crystallization of a monolayer of vibrated discs with a built-in polar
asymmetry, a model system of active liquids, and contrast it with that of vibrated isotropic discs. Increasing
the packing fraction ϕ, the quasicontinuous crystallization reported for isotropic discs is replaced by a
transition, or a crossover, towards a “self-melting” crystal. Starting from the liquid phase and increasing the
packing fraction, clusters of dense hexagonal-ordered packed discs spontaneously form, melt, split, and
merge, leading to a highly intermittent and heterogeneous dynamics. For a packing fraction larger than ϕ�, a
few large clusters span the system size. The cluster size distribution is monotonically decreasing for ϕ < ϕ�,
nonmonotonic for ϕ > ϕ�, and is a power law at the transition. The system is, however, never dynamically
arrested. The clusters permanently melt from place to place, forming droplets of an active liquid which
rapidly propagate across the system. This self-melting crystalline state subsists up to the highest possible
packing fraction, questioning the stability of the crystal for active discs unless it is at ordered close packing.
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Assemblies of self-propelled particles are prone to a
number of novel collective behaviors specific to these
intrinsically out-of-equilibrium systems [1,2]. As such,
they open new paths for designing smart materials, but
also challenge our fundamental understanding of out-of-
equilibrium matter.
On one hand, the crystallization [3,4] and the glass

transition [5,6] of mechanically agitated grains, beads, or
discs conserve the essential properties of their equilibrium
counterparts. Even in the case of significantly inelastic
collisions, when the 2D crystallization turns into a first-
order transition with phase coexistence [7], it retains an
equilibrium flavor. A similar result is obtained in a model of
repulsive active Brownian particles (ABPs) [8]. However,
on the other hand, there are indications that the dense
phases of active matter cannot so easily be mapped onto
equilibrium situations. The transition shift to higher
densities [8–14] cannot be explained by a simple scaling
argument using effective temperature. Active glasses
exhibit very peculiar structural heterogeneity [11]. Their
dynamics is slower at short times, but faster at large times;
this suggests that the system is effectively “cooler” than its
equilibrium counterpart but also that it accesses relaxation
pathways, which are closed at equilibrium [12,13]. These
observations point at a strong decoupling between structure
and dynamics, as also underlined in [14]. Whether a simple
yet real system of active particles crystallizes following
an equilibrium scenario remains an open question of both
fundamental and practical interest.
In this Letter we take advantage of a 2D experimental

system of self-propelled polar discs [15,16], for which high
packing fractions ϕ can be reached, to perform the first
experimental study of crystallization in a system of self-
propelled discs. We identify a radically new scenario,

which shares no resemblance with the quasicontinuous,
equilibriumlike crystallization observed for isotropic discs
or with a first-order-like equilibrium phase coexistence.
Starting from the liquid phase and increasing the packing
fraction, clusters of dense hexagonally ordered packed
discs spontaneously form, melt, split, and merge, leading
to a highly intermittent and heterogeneous dynamics Fig. 1.
At ϕ ¼ ϕ�, the largest clusters percolate. The system is,
however, never dynamically arrested. Local excitations
form and propagate across the system, permanently melting
the putative crystalline phase.
The experimental system is made of vibrated discs with a

built-in polar asymmetry, which enables them to move
coherently, and has been described in detail previously

FIG. 1. Crystallization of a vibrated monolayer of (a) polar and
(b) isotropic discs. Packing fraction ϕ ¼ 0.84. The gray colormap
indicates the local orientational order parameter ψp

6 (see text for
details). For the polar discs, distinct crystal clusters (in color) are
present, while (apart from local defects) a homogeneous ordered
phase is observed in the isotropic case. (See also the movies in
Supplemental Material for the dynamics [23].)

PRL 117, 098004 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

26 AUGUST 2016

0031-9007=16=117(9)=098004(5) 098004-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.117.098004
http://dx.doi.org/10.1103/PhysRevLett.117.098004
http://dx.doi.org/10.1103/PhysRevLett.117.098004
http://dx.doi.org/10.1103/PhysRevLett.117.098004


[16]. The polar particles are micromachined copper-
beryllium discs (diameter d ¼ 4 mm) with an off-center
tip and a glued rubber skate located at diametrically
opposite positions (total height h ¼ 2 mm). These two
“legs,” with different mechanical response, endow the
particles with a polar axis. Under proper vibration, the
discs perform a persistent random walk, the persistence
length of which is set by the vibration parameters. We also
use plain rotationally invariant discs (the same metal,
diameter, and height), hereafter called the “isotropic” discs.
Here we use a sinusoidal vibration of frequency f ¼ 95 Hz
and relative acceleration to gravity Γ ¼ 2πaf2=g ¼ 2.4.
The motion of the particles is tracked using a standard CCD
camera at a frame rate of 25 Hz. In the following, the unit of
time is set to be the inverse frame rate and the unit length is
the particle diameter. Within these units, the resolution on
the position ~r of the particles is better than 0.05; that on the
orientation ~n is of the order of 0.05 rad. In the present case,
the vibration conditions are such that the persistence length
of an isolated polar particle ξ≃ 5 is 2–3 times smaller than
in [15]; no collective motion sets in and the system is closer
to existing models, for which the dynamical rules guarantee
self-propulsion without alignment [17]. In the following,
particle trajectories are tracked within a circular region of
interest (ROI) of diameter 50, where the long-time averaged
density field is homogeneous. The average packing
fractions ϕ measured inside the ROI range from 0.42 to
0.84, and the total number of particles typically from
1500 to 3000.
The nature of the liquid-solid transition for hard discs

[18] has been a matter of intense debate until recently [19],
when it was shown that the transition occurs with two steps
as in the Kosterlitz-Thouless-Halperin-Nelson et Young
scenario [20–22], but with the first transition between the
liquid phase and the hexatic phase—with orientational but
no translational order—being weakly discontinuous. Here
also, the transition observed for the isotropic particles
follows this quasicontinuous scenario, with an homo-
geneous increase of both ρðrÞ and ψ6ðrÞ, when the packing
fraction ϕ > ϕ† ≃ 0.71. We leave aside the detailed inves-
tigation of this now well-characterized transition to con-
centrate on the case of the polar particles.
The structure of the bidimensional packing is charac-

terized using standard equilibrium tools. Starting from the
particle positions at all times rpðtÞ, we compute the density
field ρðrÞ and its fluctuations as characterized by the pair
correlation function g2ðrÞ,

g2ðrÞ ¼
�P

p≠qδðr − jrq − rpjÞ
2πNr

�
; ð1Þ

where N is the number of particles within the ROI at time t
and h·i denotes the time average. We also compute the
instantaneous orientational order parameter ψ6 at the
particle scale, its fluctuations, and their correlations g6ðrÞ,

ψp
6 ¼

�
1

np

X
hpqi

expð6iθpqÞ
�
; ð2Þ

g6ðrÞ ¼
�P

p≠qψ
p
6ψ

q
6δðr − jrq − rpjÞ

2πNðN − 1Þr
�
; ð3Þ

where
P

hpp0i denotes the sum over the np neighbors of
particle p identified from a Voronoi tessellation, and ½·� a
coarse-graining of the field on the first neighbor’s shell.
Figure 2 synthesizes the structural properties of the polar

disc system and how they compare with the case of the
isotropic discs. The pair correlation function [Fig. 2(a)]
clearly exhibits the signature of an emerging crystal
structure for packing fractions similar to that of the polar
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FIG. 2. Structural properties for ϕ ∈ ½0.42 − 0.84� color coded
from red to blue. Top: Pair correlation function for the (a) polar
and (b) isotropic discs. Inset: zoom on second and third peaks.
Middle: Dependence on ϕ of (c) the mean orientational order
parameter hψ6i and (d) its fluctuations. Bottom: Spatial corre-
lation of ψ6 for the (e) polar and (f) isotropic discs.
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discs. However, a closer examination indicates that the
locations of the secondary peaks coincide with those of
the hexagonal close packing (HCP) as soon as they
develop. Hence, the structures forming in the system of
polar particles are densely packed hexagonally ordered
clusters. This contrasts with the isotropic case [Fig. 2(b)],
for which the peaks progressively shift to the right when
further compressing the crystal, which is formed at ϕ†.
Examining the statistics of ψ6 ¼ ð1=NÞPpψ

p
6 , the orienta-

tional order parameter further confirms this observation
[Figs. 2(c)–(d)]. In the case of the polar particles, the
temporal average hψ6i and temporal fluctuations, also
called the susceptibility χ6 ¼ Nvarðψ6Þ, smoothly increase
with the packing fraction. There is no inflection in hψ6iðϕÞ
and no maximum in χ6ðϕÞ, as observed in the case of the
isotropic particles. This behavior reflects that for the polar
discs the probability distribution function (PDF) of ψ6 (not
shown here) displays a bimodal shape, which is absent in
the case of the isotropic discs. These observations all take
root in the fact that the spatial correlation continuously
grows, suggesting the existence of larger and larger
domains; this is in contrast with the case of the isotropic
discs, for which the spatial correlations of ψ6 exhibit a
nonmonotonic dependence on ϕwith a characteristic length
scale that is maximal close to ϕ† [Figs. 2(e)–(f)].
The structural analysis reveals that the emergence of

crystal order in the polar discs system follows a very
different scenario from the one reported at equilibrium or
for the isotropic discs. A coexistence picture, suggestive of
a first-order transition, replaces that of a quasicontinuous
transition. Turning to the study of the dynamics, we shall
see, however, that no part of the system ever freezes; thus,
this picture is not correct either.
The mean-square displacement (MSD) Δ2ðτÞ ¼

hð1=NÞPp½rpðtþ τÞ − rpðtÞ�2i of the polar particles is
superdiffusive until τ ¼ 100, where normal diffusion sets
in, for all packing fractions [Fig. 3(a)]. This is in sharp
contrast to the case of the isotropic discs [Fig. 3(b)], for
which a clear plateau develops above ϕ†, associated with
the trapping of the particles in the crystal structure. As a
matter of fact, the short time dynamics of the polar particles
does present a small sign of trapping at the largest ϕ, but
this is rapidly wiped out by the longer-term superdiffusion.
The decrease in magnitude of the MSD with increasing ϕ
could suggest that larger and larger fractions of the particles
are trapped, while the remaining ones behave as an active
liquid. This is, however, not the correct picture, as
demonstrated by the long-time behavior of the self-part
of the dynamical overlap function Qða; τÞ and of the
dynamical susceptibility χ4ða; τÞ [24],

Qða; τÞ ¼
�
1

N

X
p

exp−
½rpðtþ τÞ − rpðtÞ�2

a2

�
; ð4Þ

χ4ða; τÞ ¼ Nvar

�
1

N

X
p

exp−
½rpðtþ τÞ − rpðtÞ�2

a2

�
; ð5Þ

which we evaluate for a ¼ 1. Instead of developing a
finite value plateau, QðτÞ, pointing at a fraction of
dynamically arrested particles, always rapidly decreases
to zero. All particles move more than one diameter on time
scales of the order of 5000 [Fig. 3(c)], and no part of the
system is dynamically arrested. By comparison, in the case
of the isotropic particles, QðτÞ clearly converges towards a
plateau close to one [Fig. 3(d)] when ϕ > ϕ†. Accordingly,
while the relaxation time τα, defined by QðταÞ ¼ 0.5,
diverges sharply at ϕ† pointing at the crystallization
transition for the isotropic particles, it mildly increases
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FIG. 3. Dynamical properties. Mean square displacement (top)
and self-part of the dynamical overlap function (middle) for
different ϕ for the [(a),(c)] polar and [(b),(d)] isotropic discs. The
dotted line in (c) shows the relaxation of particles included in a
crystalline cluster (see text for details). Bottom: (e) Relaxation
time τα and (f) maximal dynamical susceptibility χmax

4 as a
function of ϕ. Same color code as in Fig. 2.
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for the polar ones [Fig. 3(e)]. Conversely, the maximum of
the dynamical susceptibility, χmax

4 ¼ max½χ4ðτÞ�, which
takes place for τ≃ τα and quantifies the heterogeneities
of the dynamics, exhibits a mild maximum in the transi-
tional regime for the isotropic particles, while it becomes
increasingly large when entering the coexistence regime for
the polar particles [Fig. 3(f)]. For the isotropic particles, the
dynamical heterogeneities reflects the structural ones: they
gently increase in the transitional regime and vanish in the
homogeneous crystalline phase. The case of the polar
particles is more intriguing: not only do the dynamical
heterogeneities increase continuously with the packing
fraction, they also increase much faster than the relaxation
time, pointing at a peculiar collective behavior at some
intermediate packing fraction ϕ� ≃ 0.82.
Further insight into this unexpected feature comes from a

closer inspection of the densely ordered clusters unveiled
by the structural analysis (see also the movies in the
Supplemental Material [23]). A cluster is defined as a
group of particles sharing six neighbors “in contact”
(0.9d < rij < 1.1d). By convention, the neighbors are also
included in the cluster. The number of clusters [Fig. 4(a)]
fluctuates around a steady value, with no sign of coarsen-
ing, at all packing fractions. The average number of clusters
is at a maximum for ϕ≃ ϕ�. For ϕ < ϕ�, clusters split and
merge, leading to a steady distribution of cluster sizes pðsÞ
decreasing exponentially [see Fig. 4(b)]. As the packing
fraction increases towards ϕ�, the distribution approaches a
power law pðsÞ ∼ s−γ, γ ¼ 2, with a system size cutoff.
For ϕ > ϕ� it is nonmonotonic, and a peak at large cluster
sizes emerges. This behavior is reminiscent of a transition
reported in several experiments with bacteria [25–27] and
simulations [27,28]. Also, the value of γ ¼ 2 is very close
to the one obtained in simulations of self-propelled rods
(γ ¼ 1.9), in experiments on myxobacteria (γ ¼ 1.88), and
is compatible with that obtained from simplified kinetic
models of cluster dynamics [29,30] [the cluster size
distribution pðsÞ is easily related to ~pðsÞ, the probability
of a particle to be in a cluster of size s: ~pðsÞ ∝ spðsÞ].

We note that the present observation of a phase of
dynamical clusters demonstrates that diffusiophoretic sens-
ing is not necessary for this phase to take place. Even the
largest clusters, which form for ϕ > ϕ� and span the system
size, are never dynamically frozen: the locally ordered
structure spontaneously melts (see also the movies in the
Supplemental Material [23]), leading to the intermittent
formation of active droplets rapidly propagating and
relaxing the system.
The above scenario suggests that no crystal phase

stabilizes below HCP. To confirm this observation, we
compute the dynamical overlap function QðτÞ for a set of
particles which remain at all times inside the longest-lived
cluster, at the largest packing fraction ϕ ¼ 0.837 explored
here. The advection of the cluster is removed by computing
the particle displacements in the frame of their center of
mass. Doing so, we evaluate the relaxation time, of the
polar particles crystalline state. The result, displayed as the
dashed line on Fig. 3(c), shows that (i) the relaxation is
faster than that of the passive crystal at the same packing
fraction, indicating internal relaxation processes much
faster than equilibrium defects dynamics and (ii) we could
not compute the relaxation on longer time scales because of
the cluster splitting into pieces. Investigating in detail the
local melting processes at play is beyond the scope of the
present Letter. Visual inspection, however, allows us to
propose two complementary mechanisms, the last one
being admittedly purely speculative. First, the polar discs’
tendency to cluster at the highest-possible packing fraction
frees some volume, where melting can take place. Second,
active stresses could also locally shear and enforce local
melting.
Discussion.—Some of the above conclusions might be

related to the confinement and finite size of our exper-
imental system. As discussed in [29], depending on the
splitting and aggregation processes, the transition can be a
genuine phase transition (which persists in the thermody-
namic limit) or just a crossover. In the latter case, the
packing fraction ϕ� would increase with system size and hit
the HCP limit, and the system would remain in the many-
cluster phase at all ϕ.
We conclude by pointing out interesting differences with

previous studies. The present scenario is very different from
that reported for ABPs [8]. This is all the more surprising
given the absence of hydrodynamic interactions and similar
values for the bare persistence length and the Peclet
number. The difference could thus be attributed either to
(i) the potential softness or (ii) the fact that ABP dynamics
for the polar vector is decoupled from that of the velocity,
which is not the case for the present self-propelled discs
[17]. As compared to the numerical studies [11,12], the
dynamical decoupling reported here is extreme in the sense
that dynamical arrest only occurs at close packing.
Confirming this in the case of a bidisperse disordered
system would imply the absence of glass transition and
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finite time relaxation up to jamming. Finally, classical
nucleation theory was recently extended to active systems
to describe the aggregation process following the motility
induced phase separation [31,32]. Our results suggest that
alternative, radically different approaches might be neces-
sary to deal with the very dense phases of active matter.
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