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In ferromagnet–normal-metal heterostructures, spin pumping and spin-transfer torques are two
reciprocal processes that occur concomitantly. Their interplay introduces a dynamic feedback effect
interconnecting energy dissipation channels of both magnetization and current. By solving the spin
diffusion process in the presence of the spin Hall effect in the normal metal, we show that the dynamic
feedback gives rise to (i) a nonlinear magnetic damping that is crucial to sustain uniform steady-state
oscillations of a spin Hall oscillator at large angles and (ii) a frequency-dependent spin Hall magneto-
impedance that reduces to the spin Hall magnetoresistance in the dc limit.
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Introduction.—A central concept in modern spintronics
is the emergence of artificial electromagnetics due to the
interplay between magnetization dynamics and electron
transport. For instance, when an electron spin adiabatically
follows a slowly varying magnetization, its wave function
acquires a geometric phase changing with time. This phase
resembles a time-varying magnetic flux and produces a
spin motive force (SMF) according to the Faraday effect
[1,2]. As a feedback, electrons driven by SMFs react on the
magnetization via the spin-transfer torque (STT) [3–6],
which enhances the magnetic damping [7] to hinder the
magnetization dynamics that causes the SMF. Reciprocally
if a magnetic texture is driven into motion by a current, it in
turn exerts SMFs on the electrons, modifying the electrical
resistivity [8,9]. The feedback mechanism persists even in
the presence of thermal and mechanical forces [10] or when
spin-orbit interactions are strong [11]. These examples
constituent a general manifestation of Lenz’s law in
artificial electromagnetics, which states that a motive force
induction always opposes the change of flux that causes the
motive force, and vice versa [12]. In generic settings,
Lenz’s law imposes a universal rule on how a process can
be affected by its converse: Feedback should be negative;
otherwise, energy is not conserved.
In all known phenomena so far, electrons and the

magnetization couple locally in the bulk [13]. Therefore,
one is able to eliminate either the magnetization dynamics
or the electron motion at arbitrary locations to derive the
feedback renormalization of various response coefficients.
In ferromagnet (FM) and normal-metal (NM) heterostruc-
tures, however, nonlocal effects arise, because conduction
electrons and magnetization reside in different materials
and couple only at the interface. In this scenario, a
precessing FM can pump spin current into the NM
[14,15], which subsequently experiences a backflow and
reacts on the FM via the STT [16]. The combined effect of
spin pumping and the backflow-induced STT renormalizes

the interfacial transverse conductance [17] and captures a
static feedback phenomenon involving nonlocal processes.
However, recent experiments showed that the spin Hall
effect (SHE) in the NM can drastically modify the
dynamical behavior of the entire heterostructure [18,19].
Taking into account the SHE, spin pumping and spin
backflow are also connected via the combined effect of
the SHE and its inverse process, which forms a feedback
loop as illustrated in Fig. 1(a). This additional feedback
mechanism, proportional to θ2s (θs is the spin Hall angle),
was completely ignored in previous studies [20,21].
Nevertheless, the recently discovered spin Hall magneto-
resistance (SMR) [22–24] reveals that physics at the θ2s
level is essential to the electron transport. As the reported
spin Hall angle θs is getting larger [25,26], it is tempting to
ask whether a feedback effect proportional to θ2s can alter
the magnetization dynamics or the electron transport in a
qualitative way.
In this Letter, we show that our proposed feedback

mechanism manifests as a novel nonlinear damping effect
in the FM dynamics. It enables uniform steady-state auto-
oscillations of a spin Hall oscillator by preventing it from
growing into magnetic switching. If our proposed feedback
effect is ignored, however, auto-oscillations are possible
only for spin valves without the participation of the SHE
[27], for materials with strong dipolar interactions [28], or
for spatially localized solitons in a FM-NM heterostructure
[29,30]. In a reciprocal sense, we show that the feedback
loop also gives rise to a spin Hall magnetoimpedance in the
electron transport which reduces to the observed SMR in
the dc limit.
Formalism.—Consider a FM-NM bilayer structure as

shown in Fig. 1(a), where the layer thicknesses are dM and
dN , respectively. The coordinate system is chosen such that
the magnetization direction at rest is along x, and the
interface normal is along z. We assume that the FM is
insulating (e.g., YIG), but the essential physics remains
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valid for a conducting FM. Let μ0=2 be the electrochemical
potential and μ the vector of spin accumulation in the
NM, so by Ohm’s law the charge current density is
Jci ¼ −ðσ=2eÞ½∂iμ0 þ θsεijk∂jμk�, and the spin current
density is Jsij ¼ −ðσ=2eÞ½∂iμj − θsεijk∂kμ0� with i the
transport direction and j the direction of spin polarization.
In our device geometry, only the spin current flowing along
the z direction is relevant; thus, we assume μ ¼ μðz; tÞ.
Correspondingly, the spin current density reduces to a
vector Js; we scale it in the same unit as the charge current
density Jc. The electron and spin dynamics in the NM are
then described by three equations:

∂μ
∂t ¼ D

∂2μ

∂z2 −
1

τsf
μ; ð1Þ

Jc ¼ −
σ

2e

�
∇μ0 þ θsẑ ×

∂μ
∂z

�
; ð2Þ

Js ¼ −
σ

2e

�∂μ
∂z þ θsẑ × ∇μ0

�
; ð3Þ

where D is the diffusion constant, τsf is the spin-flip
relaxation time, σ is the conductivity, e is the electron
charge, and θs is the spin Hall angle.
To solve the spin accumulation μ, we assume that the

charge current density Jc is fixed by external circuits and is

uniform in space. Besides that, we have two boundary
conditions [21]: JsðdNÞ ¼ 0 and

Js0 ≡ Jsð0Þ ¼
Gr

e
½m × ðm × μs0Þ þ ℏm × _m�; ð4Þ

where we used the macrospin model and m is the unit
vector of the magnetization. μs0 stands for μð0Þ and Gr is
the real part of the areal density of the spin-mixing
conductance (the imaginary partGi is neglected sinceGi ≪
Gr [31]). The m × ðm × μs0Þ and ℏm × _m terms represent
STT and spin pumping, respectively. They are two funda-
mental ingredients bridging the electron (spin) transport in
the NM with the FM dynamics. Because of spin con-
servation, the spin current density Js0 must be added to the
Landau-Lifshitz-Gilbert (LLG) equation [16,17]

dm
dt

¼ γHeff ×mþ α0m ×
∂m
∂t þ ℏγ

2eMsdM
Js0; ð5Þ

where γ is the gyromagnetic ratio, ℏ is the reduced Planck
constant, Ms is the saturation magnetization, α0 is the
Gilbert damping constant, and Heff is the effective mag-
netic field.
The typical frequency ω of the magnetization oscillation

is much smaller than the spin relaxation rate 1=τsf . As a
result, the spin accumulation μðz; tÞ adapts to the instanta-
neous magnetization and is kept at quasiequilibrium [20],
and the spin dynamics described by Eq. (1) reduces to a
stationary spin diffusion process at every instant of time.
Retaining to the θ2s order, Eq. (1) is solved as

μðzÞ ¼ θs
2eλ
σ

ẑ × Jc
sinh 2z−dN

2λ

cosh dN
2λ

þ 2eλ
σ

½Js0 þ θ2s ẑ × ðẑ × Js0Þ�
cosh z−dN

λ

sinh dN
λ

; ð6Þ

where λ ¼ ffiffiffiffiffiffiffiffiffi
Dτsf

p
is the spin diffusion length. Here, we

suppress the t variable in μðzÞ, since its time dependence
simply originates from Jc and Js0. Combining Eqs. (1)–(6),
we can either eliminate the electron degrees of freedom to
derive an effective magnetization dynamics or eliminate the
time derivative of the magnetization ( _m) to get an effective
magnetotransport of the electrons. These operations invoke
our proposed dynamic feedback mechanism to the FM-NM
heterostructure.
Nonlinear damping.—Assume that Jc is an applied dc

charge current density fixed by external circuits. It only
supplies a constant drive to the magnetization but does not
participate in the feedback process. To make it more
specific, if we instead consider a constant voltage drive
∇μ0 ¼ const, then Jc and ∇μ0 will switch roles in Eqs. (2)
and (3), and Eq. (6) will become a solution of μðzÞ in terms
of ∇μ0 and Js0. In other words, either Jc or μ0 must depend

FIG. 1. (a) In a FM-NM bilayer, spin pumping and spin
backflow are connected by the SHE and its inverse process.
(b),(c) Simulations of a spin Hall nano-oscillator in the presence of
the feedback-induced nonlinear damping αfb, with γH ¼ 10 GHz,
dm ¼ 1 nm, α0 þ αsp ¼ 0.01, and other parameters taken from
Ref. [33]. The STT strength ωs is scaled in megahertz.
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on z while the other is fixed by external circuit. In the
following, we will focus on a constant current drive
condition and allow μ0 ¼ μ0ðzÞ. Our goal is to express
the spin current density flowing across the interface Js0 in
terms of the magnetization mðtÞ, by which the LLG Eq. (5)
will no longer involve any electron degree of freedom
except the constant drive Jc. To this end, we combine
Eqs. (4) and (6) for z ¼ 0 and obtain two convoluted
relations of Js0 and μs0. By means of iterations truncating at
θ2s order, we can solve Js0 as a function of Jc, mðtÞ, and its
time derivative. Then we insert this Js0 into Eq. (5), which
yields the effective magnetization dynamics

dm
dt

¼ γHeff ×mþ ωsm × ½ðẑ × ĵcÞ ×m�

þ ðα0 þ αspÞm ×
∂m
∂t

þ αfb

�
m2

zm ×
∂m
∂t þ ∂mz

∂t m × ẑ

�
; ð7Þ

where ĵc is the unit vector of Jc and

ωs ¼ θsJc
ℏγ

eMsdM

λGr tanh
dN
2λ

σ þ 2λGr coth
dN
λ

ð8Þ

is the strength of the STT (driven by Jc) scaled in the
frequency dimension. The two damping coefficients are

αsp ¼
ℏ2γ

2e2MsdM

σGr

σ þ 2λGr coth
dN
λ

; ð9Þ

αfb ¼ θ2s
ℏ2γ

e2MsdM

σλG2
r coth

dN
λ

ðσ þ 2λGr coth
dN
λ Þ2

: ð10Þ

Here, αsp describes the conventional enhanced damping
from spin pumping with the spin backflow effects taken
into account [16,17,20,21]; it is independent of the SHE.
By contrast, the αfb term is completely new. It reflects the
dynamic feedback realized by virtue of the combined effect
of the SHE and its inverse process as schematically shown
in Fig. 1(a). From Eq. (7), we see that this novel damping
term is nonlinear inm⊥—the component ofm transverse to
the effective fieldHeff , whereas the Gilbert damping term is
linear in m⊥.
The feedback-induced nonlinear damping effect can be

understood in an intuitive way. If the magnetization
precession is getting larger, it will trigger a chain reaction:
First the pumped spin current Js0 increases, and then the
spin diffusion becomes stronger (i.e., j∂zμj gets larger).
This will necessarily lead to a larger electromotive force
(emf) ∇μ0 in the NM according to Eq. (2), as we have fixed
the current density Jc. The change of the emf will
eventually feed back into Js0 according to Eq. (3), limiting

its further growth. As a consequence, the growing magneti-
zation precession is inhibited. If we draw an analogy
between the magnetization oscillation and an electric motor,
the feedback loop realizes a back emf induction, preventing
the electric motor from rotating faster.
Example.—We demonstrate the physical significance of

the nonlinear damping effect in a current-driven spin Hall
nano-oscillator. Consider that the magnetization is polar-
ized by a magnetic field H ¼ Hx̂ and is driven by a dc
current density Jc ¼ Jcŷ. To determine the threshold of
auto-oscillation excitation, we assume that mðtÞ ¼
x̂þm⊥eiωt, where m⊥ ¼ my þ imz and jm⊥j ≪ 1, and
regard ω as a complex frequency where the imaginary part
represents the damping. Inserting the above ansatz into
Eq. (7) and setting Im½ω� ¼ 0 yields the threshold STT
strength: ωth

s ¼ ðα0 þ αsp þ αfb=2ÞγH, which can be con-
verted to a threshold current density Jthc by Eq. (8). In the
beyond threshold regime Jc > Jthc , m⊥ starts to grow
exponentially in time. If αfb ¼ 0, however, the growth will
ultimately evolve into a magnetic switching. This is
because the driving STT and the Gilbert damping are both
linear in m⊥, so that if the former overcomes the latter, it
wins at arbitrary angles θ ¼ arcsinm⊥. As a result, when-
ever a spontaneous motion is triggered, its amplitude will
grow indefinitely. The only way to enable stable oscillation
at an intermediate configuration is to make the overall
damping grow faster than the driving STTwith an increas-
ing m⊥; i.e., the damping has to be nonlinear in m⊥. By
doing so, the amplitude growth will terminate at an angle
where the two competing mechanisms compensate each
other, and a steady-state oscillation is realized there. The
feedback-induced nonlinear damping effect just fulfills this
need. From the perspective of dynamical stability, after a
steady-state oscillation is achieved, the damping (the STT)
will dominate again if the angle θ is getting larger (smaller),
so that the magnetization will be dragged back. We mention
in passing that our proposed feedback mechanism is not
exclusive to FMs but applies to antiferromagnets as well
when integrated with the SHE [32].
To justify the above prediction, we perform a series of

numerical simulations. From Eq. (10), we know that a
smaller (larger) dM (dN) leads to a larger αfb. Consider a
YIG-Pt bilayer structure with dM a few nanometers and
dN ≫ λ, and other material parameters taken from a recent
experiment [33], then αfb is estimated to be of the order of
10−4, comparable to the intrinsic Gilbert damping α0
in YIG. Assuming γH ¼ 10 GHz, α0 þ αsp ¼ 0.01, and
αfb ¼ 4 × 10−4, we plot in Fig. 1(b) the precession angle θ
as a function of time for three different STT strengths ωs
(scaled in megahertz). We also plot in Fig. 1(c) the terminal
angle θðt → ∞Þ as a function of ωs for four different values
of αfb. In Fig. 1(c), two features are evident: (i) A larger ωs
(larger driving current density Jc) results in a larger
terminal angle, but, at sufficiently large ωs, the oscillator
inevitably undergoes a magnetic switching. (ii) A larger αfb
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(stronger feedback) widens the window of steady-state
oscillations. These results have justified that the nonlinear
damping effect described by Eq. (7) can indeed sustain
stable oscillations.
Next, we comment on several side effects that could

potentially obscure the observation of our predictions. First,
if the FM film is too thin, the dipolar interaction might not
be negligible, which can cause magnon-magnon scattering
that provides a different nonlinearity to bound a sponta-
neous excitation from blowing up [28]. When the dipolar
effect dominates, the nonlinear damping effect is under-
mined. However, if the magnon-magnon scattering is
negligible and the dipolar effect can be approximated by
a hard-axis anisotropy, the nonlinear damping effect should
still be observable, but the steady-state precession will
become elliptical. Second, in existing realizations of spin
Hall oscillators such as Ref. [30], a point contact is often
used. A known fact about such an experimental setup is that
it can easily excite the spatially localized mode (soliton)
[29] rather than a uniform oscillation. Finally, a steady-state
oscillation seems to be possible if we apply the driving
current density Jc parallel tom (so the spin accumulation is
perpendicular to m due to the device geometry). However,
in that case, the oscillation cannot be regarded as an auto-
oscillation of the eigenmode with a fixed frequency.
Instead, the magnetization undergoes consecutive preces-
sional switching with a frequency proportional to Jc [34].
Although this still forms an oscillator, it is not able to
directly verify the physical significance of our nonlinear
damping effect.
Spin Hall magnetoimpedance.—As a reciprocal effect,

the dynamic feedback also affects the electron transport. If
we apply an ac current density JcðtÞ ¼ ~Jceiωt to an FM-
NM heterostructure longitudinally, the SHE will drive the
magnetization precession via the STT, which in turn can
pump spin current back into the NM and renormalize the
resistivity by means of the inverse SHE. This is analogous
to an ac electric motor accommodating the counteractive
motive force induced by the simultaneous dynamotor
effect. Although the feedback received by an ac current
drive has been studied from the angle of STT-induced
ferromagnetic resonance [18,35–37], we explore its phe-
nomenology from a feedback perspective, which is con-
ceptually advanced and reveals new insights.
Consider that the magnetization mðtÞ is oscillating

uniformly around an applied magnetic field H ¼ Hĥ. By
performing a Fourier transformation, we can rewrite Eq. (5)
in the frequency domain (where quantities are capped with
tildes) and obtain

~m⊥ ¼ ℏγ
2eMsdF

iω ~Js0 þ ðωH þ iα0ωÞĥ × ~Js0
ðωH þ iα0ωÞ2 − ω2

; ð11Þ

where ωH ¼ γH. Combining Eq. (11) with the spin current
density flowing through the interface [Eq. (4)], the spin

accumulation [Eq. (6)], and Ohm’s law [Eq. (2)], we
are able to solve the (spatially) averaged electric field
~E≡ −ð1=2edNÞ

R dN
0 ∇~μ0dz. Choosing the in-plane coor-

dinates such that ~Jc ¼ ~Jcx̂, we obtain

~Ex ¼ ½ρþ Δρ0 þ ΔZ1ðωÞð1 − h2yÞ� ~Jc; ð12aÞ

~Ey ¼ ½ΔZ1ðωÞhxhy þ ΔZ2ðωÞhz� ~Jc; ð12bÞ

where ρ ¼ 1=σ is the intrinsic bulk resistivity of the NM
without including any feedback effect. Here, the spin Hall
magnetoimpedance (SMI) consists of three distinct con-
tributions: one frequency-independent (dc) component
Δρ0=ρ ¼ −θ2sð2λ=dNÞ tanhðdN=2λÞ and two frequency-
dependent components

ΔZ1ðωÞ
ρ

¼ θ2s
λ2ρGr

dN

ð1þU þ PωÞtanh2 dN
2λ

ð1þ U þ PωÞ2 þQ2
ω
; ð13Þ

ΔZ2ðωÞ
ρ

¼ − θ2s
λ2ρGr

dN

Qωtanh2
dN
2λ

ð1þ U þ PωÞ2 þQ2
ω
; ð14Þ

where U ¼ 2ρGrλ cothðdN=λÞ and

Pω ¼ ℏ2γGr

2e2MsdF

iωðωH þ iα0ωÞ
ðωH þ iα0ωÞ2 − ω2

; ð15aÞ

Qω ¼ ℏ2γGr

2e2MsdF

ω2

ðωH þ iα0ωÞ2 − ω2
: ð15bÞ

In the dc limit ω → 0, the above results reduce to the
recently discovered SMR [22–24]. Equations (13) and (14)
give us a relation Re½ΔZ2� ¼ Im½ΔZ1�, which will break
down if the imaginary part of the spin-mixing conductance
Gi is included in our calculation [31]. In Fig. 2, we plot
ΔZ1ðωÞ and ΔZ2ðωÞ as functions of the frequency ω with

FIG. 2. Frequency dependence of the spin Hall magnetoimpe-
dance scaled by Δρ1 ≡ limω→0Re½ΔZ1�. Re½ΔZ2� is not shown,
since Re½ΔZ2� ¼ Im½ΔZ1�. The plot is based on a YIG-Pt
structure [33] with α0 ¼ 2.3 × 10−4, dM ¼ 1 nm, and dN ≫ λ.
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all quantities scaled by the longitudinal SMR Δρ1. Figure 2
shows that a pronounced deviation of the SMI from the
SMR takes place only in the vicinity of the STT-induced
ferromagnetic resonance. This deviation, according to
Eqs. (13)–(15), scales roughly as dN=dM if dN is small.
In a recent measurement [35], the observed deviation of the
SMI from the SMR is negligibly small, probably because
their FM is too thick (dM ¼ 55 nm) while the NM is too
thin (dN ¼ 4 nm).
The Oersted field generated by Jc is also responsible for

the SMI [36]. But one can distinguish the feedback
contribution and the Oersted field contribution from the
symmetry pattern of SMI with respect to ðω − ωHÞ. For
instance, Re½ΔZ1� due to the dynamic feedback is sym-
metric around ωH, whereas it becomes antisymmetric when
the Oersted field is dominating. The relative ratio of the two
contributions depends on the NM thickness dN . For fixed
dc current J ¼ JcdN , the Oersted field is fixed, but the STT
is basically proportional to dN for dN > λ as shown by
Eq. (8). Therefore, to observe an overwhelming feedback
contribution, both the NM and the FM should be thin
(while keeping dN > λ). This feature has been verified in a
recent experiment [37].
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