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Numerical results suggest that the quantum Hall effect at ν ¼ 5=2 is described by the Pfaffian or anti-
Pfaffian state in the absence of disorder and Landau-level mixing. Those states are incompatible with the
observed transport properties of GaAs heterostructures, where disorder and Landau-level mixing are
strong. We show that the recent proposal of a particle-hole (PH)-Pfaffian topological order by Son is
consistent with all experiments. The absence of particle-hole symmetry at ν ¼ 5=2 is not an obstacle to the
existence of the PH-Pfaffian order since the order is robust to symmetry breaking.
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One of the most interesting features of topological
insulators and superconductors is their surface behavior.
A great variety of gapless and topologically ordered gapped
surface states have been proposed [1]. Such states are
anomalous; that is, they can only exist on the surface of a
3D bulk system and not in a stand-alone film. Finding
experimental realizations of exotic surface states has
proved difficult, and most of them have remained theo-
retical proposals. Thus, it came as a surprise when Son [2]
argued that one such exotic state [3], made of Dirac
composite fermions with the particle-hole symmetry (PHS),
has long been observed experimentally in a two-dimensional
system: the electron gas in the quantum Hall effect (QHE)
with the filling factor ν ¼ 1=2.
At first sight, Son’s idea violates the fermion doubling

theorem [4]. However, the theorem does not apply to
interacting systems such as the one Son considered.
Besides, in contrast to the conditions of the doubling
theorem, the action of PHS is nonlocal in QHE since it
involves filling a Landau level. Interestingly, the picture of
composite Dirac fermions sheds light on the geometrical
resonance experiments [5], which the classic theory [6] of
the 1=2 state could not explain. In this Letter we show that a
closely related idea [2] provides a natural explanation
for the observed phenomenology on the enigmatic QHE
plateau at ν ¼ 5=2 in GaAs.
A Cooper pairing of Dirac composite fermions in the s

channel results in a fractional QHE state dubbed particle-
hole (PH) Pfaffian [2,7]. We argue that the PH-Pfaffian
topological order is present on the QHE plateau at ν ¼ 5=2.
This might seem unlikely because the particle-hole sym-
metry is violated by the Landau-level mixing (LLM) in
the observed states of the second Landau level in GaAs.
Besides, numerics [8–13] supports the Pfaffian [14] and
anti-Pfaffian [15,16] states at ν ¼ 5=2, even in the presence
of PHS. At the same time, the existing numerical work,
which always neglects strong disorder and typically
neglects strong LLM, is not yet in the position to explain

the physics of the 5=2 state, as is evidenced by a large
discrepancy between numerical and experimental energy
gaps [17]. Note that a recent attempt to incorporate LLM
[13] into simulations led to the manifestly wrong con-
clusion that the 5=2 state does not exist at realistic LLM.
Indeed, as discussed in Ref. [13], the existing perturbative
methods are justified only at weak LLM. There is also no
conflict between the PH-Pfaffian order and the absence of
PHS at ν ¼ 5=2 since topological orders in the fractional
QHE are not protected by symmetry. On the other hand, it
turns out that the PH-Pfaffian order naturally explains the
experimental data that could not be explained [18,19] by
the Pfaffian and anti-Pfaffian hypotheses. Thus, the support
for the Pfaffian and anti-Pfaffian states from numerical
studies of simplified Hamiltonians with PHS opens an
intriguing possibility of “symmetry from no symmetry”:
the particle-hole Pfaffian order is stabilized by LLM and
impurities which break PHS.
Below, we review the properties of the PH-Pfaffian state

and compare them with experiments. We also propose new
experimental probes. Besides the QHE in GaAs, our moti-
vation comes from the possibility of new non-Abelian states
[20] in ZnO [21] and multilayer graphene [22,23].
Most experiments probe edge physics. The edge theory

can be constructed from the bulk wave function according
to the bulk-edge correspondence [24]. We will take the
opposite route and deduce the PH-Pfaffian ground state
from the edge Lagrangian. The latter is fixed by symmetry
considerations. We do not expect the ground state to be
invariant under PHS.Nevertheless, its topological ordermust
be compatible with such a symmetry because our system is
in the same phase as the particle-hole symmetric superfluid
built by a Cooper pairing of Son’s composite fermions.
In particular, the electric and thermal Hall conductances are
determined by the topological order and hence must be
invariant to the particle-hole conjugation.
As usual, we ignore the filled states of the first Landau

level. The particle-hole conjugation then demands
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reversing the direction of all edge modes and adding
another integer edge mode with the Hall conductance e2=h
and the thermal conductance π2k2BT=3h. It thus follows
from symmetry that the electric and thermal conductances
of the PH systemmust be one half of the above expressions:
G ¼ e2=2h and κ ¼ π2k2BT=6h. This corresponds to an
edge theory with a downstream charged Bose mode whose
thermal conductance is 2κ and an upstream Majorana
fermion whose thermal conductance is one half that of a
Bose mode. The Lagrangian density

L ¼ −
2

4π
½∂tϕ∂xϕþ vcð∂xϕÞ2� þ iψð∂t − vn∂xÞψ ; ð1Þ

where the chiral Bose field ϕ propagates with the velocity
vc and determines the charge density on the edge according
to ρðxÞ ¼ e∂xϕ=2π. The neutral chiral Majorana fermion
ψ ¼ ψ† travels in the direction opposite that of the Bose
mode. The action (1) is very similar to the edge theory of
the Pfaffian state [25] and differs only by the propagation
direction of the neutral mode.
Many ground-state wave functions correspond to the

same low-energy edge theory (1). They depend on details
of impurities and LLM in a particular sample. We use
the generalized Moore-Read prescription [26] to write an
example of a wave function with the PH-Pfaffian topo-
logical order. A topological order in the first Landau level is
encoded by a simpler wave function than the same order
in the second level. To facilitate a comparison with the
literature on possible 5=2 states [27], we write a wave
function for electrons in the first Landau level:

ΨðfzigÞ ¼
Z

fd2ξighfzigjfξigiΦðfξigÞ; ð2Þ

where zk ¼ xk þ iyk and ξk are complex coordinates,
hfzigjfξigi ¼ Πi exp½−ðjξij2 − 2ξ̄izi þ jzij2Þ=ð4l2BÞ� is the
coherent state kernel that projects the wave function onto
the lowest Landau level, lB is the magnetic length, and
the bar denotes complex conjugation. The factor Φ is the
correlation function [26] of the electron operators Ψe ¼
ψðxÞ exp½2iϕðxÞ� in the conformal field theory (1):

ΦðfξigÞ ¼ Pf

�
1

ξ̄i − ξ̄j

�
Πi<jðξi − ξjÞ2: ð3Þ

Our choice of the electron operator determines the shift
[28,29] S¼ χðhz−hz̄Þ, where χ represents the Euler char-
acteristic of the surface that confines electrons, and hz and
hz̄ are the scaling dimensions of the holomorphic and
antiholomorphic parts of the electron operator Ψe. Thus,
S ¼ 1 on a sphere, in agreement with Son [2].
Quasiparticles braid triviallywith electrons andare created

by the same operators as in the Pfaffian theory [25]. There are
six superselection sectors: vacuum 1, neutral fermion ψ , two

charge-e=2 excitations expðiϕÞ andψ expðiϕÞ, and two non-
Abelian quasiparticles, σ expðiϕ=2Þ and σ expð3iϕ=2Þ, with
charges e=4 and 3e=4, where the operator σ twists the
boundary conditions for the Majorana fermion. The fusion
rules are ψ × ψ ¼ 1, ψ × σ ¼ σ, and σ × σ ¼ 1þ ψ . The
braiding rules are different from the Pfaffian state. We will
need the statistical phase, picked up by an e=4 particle
after it encircles an excitation with the electric charge ne=4
and the topological chargeα ¼ 1; σ, orψ. The phase depends
on the fusion channel β of the topological charges α and σ
and equals

ϕ ¼ nπ
4

þ ϕ0
αβ; ð4Þ

where ϕ0
1σ ¼ 0, ϕ0

ϵσ ¼ π, ϕ0
σ1 ¼ π=4, and ϕ0

σϵ ¼ −3π=4.
The particle-hole conjugation changes the signs [15,30] of

all statistical phases mod 2π. One easily verifies that the
above fusion and braiding rules are compatible with PHS.
For example, one can use the invariance of the braiding
phase under a simultaneous change of the signs of all electric
charges. Next, one observes that all phases change their
signs mod 2π after the excitations expðiϕÞ and ψ expðiϕÞ
transform into each other, while all other superselection
sectors remain unchanged (remember that π ¼ −πmod 2π).
We now turn to a comparison with experiments. The

experiment [31] revealed an upstream neutral mode on the
5=2 edge. Upstream modes can either be topologically
protected, as at ν ¼ 2=3, or emerge from edge recons-
truction, as at ν ¼ 1=3. The low-temperature propagation
length is finite for neutral modes on a reconstructed edge
[32]. The propagation length diverges at T → 0 for topo-
logically protected modes [32,33]. The observed propaga-
tion length of the neutral mode at ν ¼ 5=2 is comparable
with the propagation lengths at ν ¼ 2=3 and 3=5 and much
longer [34] than at ν ¼ 1=3 and 2=5 in similar samples.
Thus, the 5=2 upstream mode is topologically protected.
This agrees with the Lagrangian (1). The anti-Pfaffian
state also has topologically protected upstream modes. The
Pfaffian order appears to be incompatible with the experi-
ment. Note that a recent numerical study [13] supports a
protected upstream mode at strong LLM.
Next, consider experiments on quasiparticle tunneling

through narrow constrictions [19,35,36]. Tunneling is
dominated by the lowest-charge quasiparticles σ expðiϕ=2Þ.
Theory [24,27] predicts the power dependence of the zero-
bias conductance on the temperature: G ∼ T2g−2, with a
universal exponent g. The exponent g ¼ 1=4 is the same in
the PH-Pfaffian and Pfaffian states [27]. The anti-Pfaffian
order corresponds [27] to g ¼ 1=2. Experimental results for g
exceed [19,27,37,38] the theoretical values at all fractional
filling factors [39]. This is explained by a combination of
three mechanisms that suppress low-temperature tunneling:
Coulomb repulsion across the constriction [27,38], edge
reconstruction [40,41], and dissipation [42]. Hence, experi-
ments can only give an upper bound on g. At ν ¼ 5=2 that
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bound [19,35,36] is 0.4. Thus, the PH-Pfaffian state is
compatible with the tunneling data and the anti-Pfaffian
state is not. We observe that the transport data exclude both
the Pfaffian and anti-Pfaffian states. The PH-Pfaffian topo-
logical order is consistent with the existing experiments.
One interpretation of the Fabry-Pérot interference

experiment [43] at ν ¼ 5=2 is based on the even-odd
topological effect [44,45] predicted for the Pfaffian and
anti-Pfaffian states. The same even-odd effect occurs in the
PH-Pfaffian state. Indeed, the magnetic flux dependence of
the current through a Fabry-Pérot device (Fig. 1) comes
from the interference of the quasiparticle paths through the
two constrictions. Such interference is present whenever
an even number of σ expðiϕ=2Þ quasiparticles are localized
inside the device. If the number is odd, the tunneling
quasiparticle can fuse with the topological charge α of the
interferometer in two ways. In both fusion channels β, the
phase difference ϕðβÞ between the two trajectories is given
by the braiding phase (4). Since the phases (4) differ by π in
the two fusion channels, there is no interference and the
even-odd effect is observed.
In common with the Pfaffian and anti-Pfaffian states,

we expect the PH-Pfaffian topological order to occur in a
spin-polarized electron liquid. The existing data on the
polarization of the 5=2 liquid are controversial. A recent
observation of the 5=2 plateau in ZnO strengthens the case
for nonzero polarization [21].
What new experiments could probe the PH-Pfaffian

order? First, the thermal Hall conductance κ¼ π2k2BT=6h
in the PH-Pfaffian state differs from all other proposed
topological orders. A more striking manifestation of the
PH-Pfaffian state comes from Mach-Zehnder interferom-
etry [46–53], which we address below. We discover two
unique signatures of the PH-Pfaffian order: the current
through the interferometer does not depend on the magnetic
field; the Fano factor for the current noise diverges at some
values of the magnetic field. Neither feature is known to
occur in any other QHE state at any filling factor.
Quasiparticles can tunnel between the inner and outer

edges of the Mach-Zehnder interferometer (Fig. 2) at
quantum point contacts QPC1 and QPC2. After a tunneling
event, a quasiparticle or hole travels along the inner edge
and is absorbed by drain D2. The drain is inside the
interferometer. As a result, the total topological charge,
accumulated in the drain, affects the probability of the next

tunneling event. Indeed, the phase difference between the
two possible tunneling processes through QPC1 and QPC2
depends on the statistical phase ϕs, accumulated when a
quasiparticle encircles the drain. The tunneling probability
also depends on the Aharonov-Bohm phase ϕAB, accumu-
lated on the loop QPC1-A-QPC2-B-QPC1. Since tunneling
is dominated by e=4 particles, the phase ϕAB ¼ πΦ=2Φ0,
where Φ is the magnetic flux through the loop QPC1-A-
QPC2-B-QPC1 and Φ0 ¼ hc=e is the flux quantum.
To compute the tunneling probabilities, we use the

Hamiltonian of the interferometer,

Ĥ ¼ Ĥinner þ Ĥouter þ T̂1 þ T̂2; ð5Þ
where Ĥinner and Ĥouter are the Hamiltonians of the two
edges and the operators T̂1;2 describe quasiparticle tunnel-
ing at QPC1 and QPC2. The four terms on the right-hand
side of Eq. (5) depend on the gauge choice. We select such
a gauge for the electromagnetic field that all information
about the Aharonov-Bohm phase ϕAB is contained in the
tunneling operator T̂2. All information about the statistical
phase ϕs is also absorbed into T̂2. Thus, we select the
tunneling operators in the form

T̂1 ¼ Γ1Ψ
q
outerðQPC1ÞΨq†

innerðQPC1Þ þ H:c:; ð6Þ

T̂2 ¼ Γ2 expðiϕAB þ iϕsÞΨq
outerðQPC2ÞΨq†

innerðQPC2Þ
þ H:c:; ð7Þ

where H.c. stands for the Hermitian conjugate and the
operators Ψq

edge destroy quasiparticles of charge e=4 on the
inner or outer edge at the locations of the quantum point
contacts.
We will restrict our discussion to the zero-temperature

limit, where charge only travels from the higher to lower
potential. We thus assume that quasiparticles can only
tunnel from the outer edge to the inner edge. The tunneling
probability Pðne=4; α; βÞ ¼ uαβPβðne=4; αÞ, where ne=4
and α are the electric and topological charges of drain D2
before tunneling, β is the fusion channel of α with the
tunneling quasiparticle, uαβ is the probability of the fusion
outcome β, and Pβðne=4; αÞ is the tunneling probability
in the fusion channel β:uσ1 ¼ uσϵ ¼ 1=2. The fusion
probabilities of all other possible processes equal 1.
The probability Pβ can be found from the second order
perturbation theory in T̂1;2:

QPC2QPC1

S1

D2 S2

D1

FIG. 1. Aharonov-Bohm interferometer. Quasiparticles move
along the edges and tunnel between the edges at the quantum
point contacts QPC1 and QPC2. Several quasiparticles are
localized inside the device.

S1 D1

D2S2

QPC1 QPC2

Outer edge

Inner edge

A

B

FIG. 2. Mach-Zehnder interferometer.
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Pβðne=4; αÞ ¼ rfjΓ1j2 þ jΓ2j2
þ 2ujΓ1Γ2j cosðϕAB þ ϕs þ γÞg; ð8Þ

where γ ¼ arg½Γ2=Γ1�, and r and u come from the voltage-
dependent correlation functions of the quasiparticle oper-
ators in the edge theory with the unperturbed Hamiltonian
Ĥinner þ Ĥouter. At low voltages eV ≪ ℏvc=L;ℏvn=L,
where L is the interferometer size, the factor u ≈ 1 since
the distance between QPC1 and QPC2 can be neglected in
the calculation of the correlation functions. It is convenient
to label the possible values of Pβðne=4; αÞ as p0, pπ=2, pπ ,
and p−π=2 depending on ϕs ¼ 0, π=2, π, or −π=2. Figure 3
shows all of the possible transitions between the six
superselection sectors of the drain.
We are ready to compute the current I between S1 andD2.

By definition, I ¼ Q=t, where Q ¼ Ne is the charge,
transmitted through the interferometer during a long time
interval t. At large N, the interval t ≈ Nt̄, where t̄ is the
average timeof four consecutive tunneling events. Since each
tunneling event transfers a charge e=4, one finds I ¼ e=t̄.
The system follows the arrows in Fig. 3. Hence, the drain

always returns to the initial superselection sector ð−e=4; σÞ
after four quasiparticles tunnel. This can happen in one
of four ways: ð−e=4;σÞ→ ð0;1Þ→ ðe=4;σÞ→ ðe=2;1Þ→
ð−e=4;σÞ, ð−e=4; σÞ → ð0;ψÞ → ðe=4; σÞ → ðe=2; 1Þ →
ð−e=4; σÞ, ð−e=4; σÞ → ð0; 1Þ → ðe=4; σÞ → ðe=2;ψÞ →
ð−e=4; σÞ, ð−e=4; σÞ → ð0;ψÞ → ðe=4; σÞ → ðe=2;ψÞ →
ð−e=4; σÞ. The average time t̄ ¼ P

qit̄i, where qi are
the probabilities and t̄i are the average times for the above
four trajectories. For example, the probability of the first
trajectory is p0=½p0 þ pπ� × pπ=2=½pπ=2 þ p−π=2�. The aver-
age travel time along that trajectory is 2=ðp0 þ pπÞþ
1=p0 þ 2=ðpπ=2 þ p−π=2Þ þ 1=pπ=2. One finds the electric
current

I¼ e
16

ðp0þpπ=2þpπþp−π=2Þ¼
er
4
½jΓ1j2þjΓ2j2�: ð9Þ

The current does not depend on themagnetic flux through the
interferometer.
We next compute the low-frequency current noise

S ¼ R∞
−∞ dt½hÎð0ÞÎðtÞ þ ÎðtÞÎð0Þi − 2hÎð0Þi2�. It can be

conveniently represented as S ¼ 2hδQ2i=½Nt̄�, where δQ
is the fluctuation of the charge, transmitted during the
interval of time Nt̄, and the angular brackets denote the
average over all of the realizations of the noise. To find δQ
for a particular realization, we define tN ¼ Nt̄þ Δt as
the time during which the charge Ne is transferred.
Then the charge, transmitted during the time Nt̄, equals
Q ≈ Ne − IΔt, with I coming from Eq. (9). Hence,
δQ ¼ −IΔt and S ¼ 2I2hΔt2i=½Nt̄�. Note that Δt ∼

ffiffiffiffi
N

p
.

Thus, S ¼ 2I2δt2=t̄, where δt2 is the mean square fluc-
tuation of the time required for four consecutive tunneling
events. The latter fluctuation is computed in the same way
as t̄. One finds S ¼ 2e�I with the Fano factor

e� ¼ e
P

pi

64

X 1

pi
¼ e
8

2− s2

1− s2þ s4
8
½1− cosð2πΦ=Φ0þ 4γÞ� ;

ð10Þ

where i runs over the set f0; π=2; π;−π=2g and
s ¼ 2ujΓ1Γ2j=½jΓ1j2 þ jΓ2j2�. At a low voltage bias, s¼ 1
in a symmetric interferometer with jΓ1j ¼ jΓ2j. Then the
Fano factor e� ¼ e=½1 − cosð2πΦ=Φ0 þ 4γÞ� diverges at
Φ ¼ ½n − 2γ=π�Φ0.
The 113 topological order [18] can also explain the

observed upstream neutral mode and tunneling exponent.
The explanation, based on the PH-Pfaffian state, has two
advantages. First, the quantization of theHall conductance in
the 113 state depends on an edge equilibration mechanism.
Any such mechanism fails at a sufficiently low temperature,
but no significant deviations from G ¼ 5e2=2h at low
temperatures have been reported in the literature. At the
same time, the conductance of the PH-Pfaffian state remains
quantized arbitrarily close to absolute zero. Besides, an
elegant combination of symmetry and non-Abelian statistics
makes the PH-Pfaffian order aesthetically appealing.
In conclusion, the PH-Pfaffian order is consistent with all

of the transport experiments at ν ¼ 5=2. Numerical support
for the Pfaffian and anti-Pfaffian states in simplified
systems without disorder and LLM suggests an interesting
possibility of symmetry from no symmetry. Smoking gun
evidence of such an effect would come from unique
behavior in Mach-Zehnder interferometry.
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