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We investigate the time-dependent reformation of the quasiparticle peak in a correlated metal near the
Mott transition, after the system is quenched into a hot electron state and equilibrates with an environment
which is colder than the Fermi-liquid crossover temperature. Close to the transition, we identify a purely
electronic bottleneck time scale, which depends on the spectral weight around the Fermi energy in the bad
metallic phase in a nonlinear way. This time scale can be orders of magnitude larger than the bare and
renormalized electronic hopping time, so that a separation of electronic and lattice time scales may break
down. The results are obtained using nonequilibrium dynamical mean-field theory and a slave-rotor
representation of the Anderson impurity model.
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When the Mott metal-insulator transition [1] is
approached from the metallic side, a narrow quasiparticle
band emerges at the Fermi energy, and spectral weight is
transferred into the Hubbard bands. This behavior, which is
observed in a large class of materials, is a paradigm
manifestation of many-body correlations, and its theoretical
description has been a major success of dynamical mean-
field theory (DMFT) [2,3]. By means of photoexcitation,
metallic phases in Mott insulators can be induced on
femtosecond time scales [4–6], which provides an in-
triguing example for ultrafast switching material properties.
While it is well understood that an intense laser pulse can
rapidly promote electrons to effective temperatures of
several 1000 K and thus lead to a partial melting of the
Mott gap [5], the equilibrium properties of such a high-
temperature state would correspond to a bad metal rather
than a Fermi liquid [7,8]. It thus remains a fundamental
question, with immediate importance for understanding the
transport properties of photoexcited metallic states, how
fast coherent quasiparticles can be formed as the excitation
energy is passed from the electrons to the lattice.
Naively one may expect that the electrons in a metal

thermalize to a quasiequilibrium state almost instantly after
the excitation, and quasiparticles are formed as soon as the
effective temperature is low enough. The relevant time
scale for this process would then be set by the electron-
lattice relaxation. In this work we show that a rapid
thermalization can fail even in the metallic phase. While
thermalization can be understood within a quasiparticle
picture (from a kinetic equation), the latter provides no clue
about the time scale for the evolution of the density of states
itself, as long as quasiparticles are not yet well defined.
Considerable progress in describing the dynamics of Mott
insulators has been made using nonequilibrium DMFT [9],
but a study of the correlated metal close to the Mott
transition has remained elusive. Although the quasiparticle

peak within DMFT corresponds to the Kondo resonance in
an effective impurity model [2], its formation in time can be
entirely different from the buildup of Kondo screening
[10–15], because the spectral weight responsible for the
Kondo screening is formed self-consistently in DMFT.
Impurity solvers such as higher-order strong-coupling
expansions [16], Monte Carlo techniques [17], or den-
sity-matrix renormalization group [18], have not yet
reached sufficiently long times in this parameter regime.
In equilibrium, the slave-rotor approach developed by

Florens and Georges [19,20] provides an intuitive semi-
analytical understanding of the Mott transition, by repre-
senting electrons in terms of a quantum rotor (charge) and a
spinful fermion. In this Letter we solve the coupled spinon
and rotor equations out of equilibrium, and show that the
two partial degrees of freedom become almost decoupled
during the evolution. As a consequence, bad metallic
behavior prevails in a photoexcited state over times which
can be orders of magnitude longer than the electron
hopping, and therefore even become comparable to the
electron-phonon relaxation time.
Model.—We study the particle-hole symmetric Hubbard

model
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where JðtÞ is the time-dependent hopping amplitude, U is
the on-site Coulomb repulsion, ciσ and c†iσ are electron
annihilation and creation operators for spin σ ∈ f↑;↓g on
site i, and niσ ¼ c†iσciσ . To study the time-dependent
formation of quasiparticles, we initially prepare the system
in the atomic limit (J ¼ 0), and rapidly turn on the hopping
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to a value J0 > 0. (In the following, J0 and ℏ=J0 set the
energy and time unit, respectively, and the ramp-on profile
is given by JðtÞ ¼ J0½1 − cosðπt=tcÞ�=2 for 0 ≤ t ≤ tc ¼
2.5.) The model is solved within nonequilibrium DMFT [9]
on a Bethe lattice with half-bandwidth D ¼ 2J0; i.e., it is
mapped onto an Anderson impurity problem with self-
consistently determined hybridization function Δðt; t0Þ ¼
JðtÞGlocðt; t0ÞJðt0Þ [2], where Glocðt; t0Þ ¼ −ihTCcðtÞc†ðt0Þi
is the local contour-ordered Green’s function [21].
To solve the dynamics of this Anderson model, we

employ the U(1) slave-rotor representation [20]. The
impurity operators (cσ, c

†
σ) are substituted by c†σ ¼ f†σeiθ,

where f†σ is a fermion and θ ∈ ½0; 2πÞ is a quantum rotor
variable. A constraint L ¼ P

σf
†
σfσ − 1 on the angular

momentum L ¼ i∂θ of the rotor removes unphysical states
from the Hilbert space. With this, the interaction
Hamiltonian is determined only by the rotor, HU ¼
UL2, while fσ represents a chargeless fermion (spinon).
Furthermore, the rotor is replaced by a bosonic field
X ¼ eiθ with the constraint jXðtÞj2 ¼ 1. The dynamics
of the impurity model is then analyzed in terms of contour-
ordered rotor and spinon Green’s functions

GXðt; t0Þ ¼ −ihTCXðtÞX�ðt0Þi; ð2aÞ

Gfðt; t0Þ ¼ −ihTCfσðtÞf�σðt0Þi; ð2bÞ

where GX has a direct relation to the local charge suscepti-
bility [20], and subsequently the electron’s Green’s func-
tion is obtained by Glocðt; t0Þ ¼ iGfðt; t0ÞGXðt; t0Þ. The
model can be solved exactly when the spin-degeneracy
N and the number of rotor flavors M is increased from
N ¼ 2 and M ¼ 1 to infinity, keeping the ratio N ¼ N=M
fixed [20], and this limit provides a qualitatively correct
description of the metal-insulator transition. The resulting
integral equations correspond to a reformulation of the
Ref. [20] within the Keldysh framework and are given in
the Supplemental Material [22].
Results.—In Fig. 1(a), we plot the electronic density of

states for three temperatures at U=J0 ¼ 4 in equilibrium
(JðtÞ ¼ J0Þ. The metal insulator transition endpoint is at
Uc ≈ 4.69. Below a temperature T� ≈ 0.2, a quasiparticle
peak emerges at the Fermi energy, while for T > T� the
system is in a bad metallic state with a pseudogap at the
Fermi energy. At intermediate values of U and in an
isolated system, the quench would lead to a highly excited
electronic state which thermalizes within a few 1=J0 to an
effective temperature above the Fermi-liquid crossover T�,
which is also confirmed by the slave-rotor calculations. A
similar fast thermalization at very high electronic temper-
atures was obtained in the Hubbard model after excitation
with an electric field pulse [23], so that the quenched state
is a good representation of a hot-electron state reached after
strong photoexcitation [22].

In addition, the system is weakly coupled to a bosonic
heat bath at low temperature T ¼ 1=β, to cool down the
electrons and form the Fermi liquid when U=J0 is in the
metallic phase. We treat this dissipative bath by an addi-
tional electron self-energy Σbathðt; t0Þ ¼ λDðt; t0ÞGðt; t0Þ,
where D is the noninteracting bosonic Green’s function
with frequency ω0 ¼ 1, and λ is the coupling constant [24].
The coupling is small enough so that the effect of the bath
on the electronic density of states is weak, and the bath
provides only energy relaxation.
To track the time evolution of the system, we

compute the time-dependent spectral function Aðt;ωÞ¼
−ð1=πÞImR

t
0dsG

retðt;t−sÞeiωs. For bath temperatures
T > T�, Aðt;ωÞ is almost indistinguishable from the
equilibrium spectrum AðωÞ at temperature T already at
early times t ¼ 20 [Fig. 1(b)]. For lower temperature,
however, only the Hubbard bands are rapidly retrieved,
while the formation of the quasiparticle peak remains
incomplete even for times larger than the inverse width
of the peak [Fig. 1(c)]. The slow dynamics is also
clear from the time evolution of the spectral weight
Aðt;ω ¼ 0Þ [Fig. 1(d)]: For T < T�, the equilibrium
value Að0Þ strongly increases with decreasing T, while
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FIG. 1. (a) Equilibrium density of state AðωÞ for three different
temperatures throughout the metal-insulator crossover at U ¼ 4.
(b),(c) AðωÞ in equilibrium (dashed line) compared to the time-
dependent spectral function Aðt;ωÞ for λ ¼ 0.5 at times t ¼ 20
(blue), t ¼ 50 (red), and t ¼ 80 (green). (d) The height of the
quasiparticle peak Aðt;ω ¼ 0Þ as a function of time for U ¼ 4,
bath temperatures β ¼ 5, 6.5, 7.5, 8, 10 (from bottom to top) and
λ ¼ 0.5. Symbols on the right vertical axis correspond to the
equilibrium value Aðω ¼ 0Þ at the same temperatures. (e) The
height of the quasiparticle peak Aðt;ω ¼ 0Þ as a function of time
for U ¼ 4, 4.1, 4.25, bath temperature β ¼ 10, and λ ¼ 0.5.
Arrows indicate the time tmax [Fig. 3(c)]. The inset of (e) plots the
time-dependent spectral function AscðtscÞ ¼ Aðt;ω ¼ 0Þ as a
function of rescaled time tsc ¼ t=τ� with arbitrary rescaling of
the vertical axis (see main text).
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the time-dependent value Aðt; 0Þ becomes almost indepen-
dent of the bath temperature, indicating that the dynamics is
governed by a bottleneck of electronic nature. The closer U
is to the critical value Uc, the less metallic is the transient
state [Fig. 1(e)]. (The presence of such a bottleneck makes
it impossible to extrapolate the data Aðt;ω ¼ 0Þ to the final
equilibrium value from the early times around the bottle-
neck.) We note that qualitatively the same behavior is found
using the noncrossing impurity solver [16], although the
latter is not quantitatively accurate around the metal-
insulator transition, and Uc is reduced [22]. In the follow-
ing, wewill use the slave-rotor language to identify a purely
electronic crossover time scale [c.f. Eq. (4) below], which
captures the slow-down of the relaxation.
Despite the well-known equilibrium physics of the

Hubbard model, the slave-rotor language exhibits a
nontrivial spinon response in the crossover regime.
Figures 2(a)–2(c) show the spectral functions AX;fðωÞ ¼
−ð1=πÞIm R

dsGret
X;fðsÞeiωs in equilibrium. At high temper-

ature, the rotor has spectral weight around the Hubbard
bands, and the spinon peak is broadened due to the
interaction with the charge fluctuations [Fig. 2(a)].
Below the crossover [Fig. 2(c)], the rotor develops low-
energy spectral weight, which implies the formation of the
quasiparticle peak [20]. In the intermediate temperature
regime, however, the spinon and rotor become energe-
tically weakly coupled, and AfðωÞ develops into a
narrow Lorentzian peak [Fig. 2(b)]. The width Γ of the
Lorentzian defines a time scale τeqðTÞ ¼ 1=Γ, which has a
clear maximum τ� as a function of temperature in the
metal-insulator crossover [Fig. 2(d)] [25]. To characterize

the time evolution, we plot Gret
f ðt; t − sÞ as a function of

time difference s for various t (Fig. 3). A narrow peak in
AfðωÞ corresponds to a slow decay ofGf as a function of s,
so that we can define a nonequilibrium spinon lifetime by

τ−1ne ðtÞ ¼ −∂sGret
f ðt; t − sÞ=Gret

f ðt; t − sÞjs¼s0 ð3Þ

for some fixed time s0. (For a Lorentzian peak, τ is the
inverse width). The time τne first increases with t and then
decreases, tracking the evolution of τeqðTÞ a function of
temperature [Fig. 3(b)]. We then find that, for a given
coupling to the bath, the maximum of τneðtÞ as a function of
time (τmax) coincides with the crossover scale τ� [dashed
lines in Fig. 2(d)], and moreover, this value is reached at a
time tmax proportional to τ� [Fig. 3(c)]. The electronic
spectral function at t ¼ tmax is at the onset of quasiparticle
formation [arrows in Fig. 1(e)]. This demonstrates that the
long lifetime of the spinon provides a bottleneck time for
the relaxation in the crossover regime.
In Fig. 1(e) (and the inset) we show that Aðt;ω ¼ 0Þ for

various values of U in the crossover regime can be roughly
collapsed on each other when the time axis is rescaled by
this crossover scale τ�; i.e., to this extent τ� determines also
the slowdown of the electronic relaxation. Furthermore,
although properties of AfðωÞ are not simply reflected in the
equilibrium single-particle properties, one can approxi-
mately express the timescale τ� in terms of the electronic
degrees of freedom. The width of a sharp resonance in
AfðωÞ is given by the imaginary part of the self-energy Σf,
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equilibrium for U ¼ 4 and temperatures in the bad metal regime
[β ¼ 1, (a)], the crossover [β ¼ 5, (b)] and the metallic phase
([β ¼ 7, (c)]. (d) The spinon lifetime (inverse width of the peak)
as a function of β for different values of U. Triangular points are
calculated using the approximate expression Eq. (4). Dashed lines
indicate the maximum spinon lifetime τmax during the relaxation
process (see main text and Fig. 3).
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FIG. 3. (a) Retarded spinon Green’s function Gret
f ðt; t − sÞ as a

function of relative time s for various different times t (U ¼ 4,
β ¼ 10, λ ¼ 0.5), and in equilibrium (dashed line). The slope
decreases for t ≲ 32 and increases for t≳ 32. (b) Inverse of the
slope [Eq. (3)] as a function of t for λ ¼ 0.5, β ¼ 10, s0 ¼ 16 and
various values U below the metal-insulator transition; s0 ¼ 16 is
chosen large enough so that Gfðt; t − s0Þ reflects the low-energy
part of the Green’s function (the Lorentzian peak). (c) Crossover
time tmax plotted against τmax, where ðtmax; τmaxÞ corresponds to
the maximum of the curves τneðtÞ in panel (b).
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which depends on GX and Δ. In the crossover regime, we
can, to a first approximation, relate the rotor GX to the
electronic Green’s function by AðωÞ¼1

2
A00
XðωÞcothðβω=2Þ,

by setting AfðωÞ¼δðωÞ in the convolution Glocðt; t0Þ ¼
iGfðt; t0ÞGXðt; t0Þ [26]. Analytic continuation of Σfðt; t0Þ ¼
iΔðt; t0ÞGXðt0; tÞ then gives

τ−1eq ðTÞ ¼ −Σ00
fðω ¼ 0Þ ≈ −

Z
dω

Δ00ðωÞAðωÞ
coshðω=2TÞ2 ; ð4Þ

and τ� ¼ τeqðT�Þ, which agrees well with the numerical
result [Fig. 2(d)]. For the Bethe lattice Δ ¼ J2Gloc, so that
Δ00ðωÞ ¼ −πJ2AðωÞ. Equation (4) implies a rather
nontrivial relation between the nonequilibrium relaxation
and the electronic properties. At T�, the hyperbolic cosine
function restricts the integral to values close to the
pseudogap, where AðωÞ is small. Since the endpoint of
the metal-insulator transition temperature in the Hubbard
model is remarkably small compared to the bare energy
scales, τ� becomes much longer than the bare hopping close
to the transition U ¼ Uc.
To further analyze the relaxation, one can check

whether the rotor reaches a quasiequilibrium state while
the spinon is slowly evolving, by testing whether
the fluctuation-dissipation G>

Xðω; tÞ=G<
Xðω; tÞ ¼ eβeffω is

satisfied. The latter would imply that an effective temper-
ature Teff ¼ 1=βeff can be assigned to charge fluctuations
[using the time-dependent Fourier transforms G>;<ðω; tÞ ¼R
dsG>;<ðt; t − sÞeiωs]. Figure 4(a), however, shows that a

single charge temperature cannot be defined on the time
scale of the simulation. While the occupation of high-
energy fluctuations (the Hubbard bands) is small, the low
energy part remains at an apparent higher temperature (the
slope of lines for ω≳ −0.8 is slightly smaller than for
ω≲ −0.8); i.e., high-energy and low-energy charge fluc-
tuations are not thermalized with each other. The lower

effective temperature for larger U may be related to the
lowering of the crossover temperature with increasing U.
Because of the coupling between the spinon and the rotor,
the low-energy spectral weight of the rotor also reflects
the nonmonotonic evolution of the spinon [Fig. 4(b)]: The
increase of the spinon bandwidth for t > tmax leads to the
transfer of the rotor spectral weight to higher energies, so
that the integrated spectral weight IðtÞ of the rotor in the
low energy region 0 < ω < 0.5 has a maximum around
t ¼ tmax.
Conclusion and discussion.—In conclusion, we have

investigated how the electronic state close to the Mott
transition in the Hubbard model relaxes from an excited
hot-electron state towards the Fermi liquid. We found a
bottleneck time of purely electronic nature, before which
charge and electronic degrees of freedom remain in a
nonthermal state and cannot be characterized by an effective
temperature, and the formation of the quasiparticle band is
incomplete. The electronic relaxation is related to the spinon
lifetime τ�, and a simple estimate [Eq. (4)] in terms of the
density of states around ω ¼ 0 at the crossover temperature
T� (the onset of quasiparticle formation) shows that this time
can bemuch longer than the femtosecond hopping time, and
thus violates the paradigmof rapid thermalization in ametal.
The absence of quasiparticles implies long-lived bad met-
allic behavior, and should thus be observable also in optical
experiments on materials like LiV2O4, which are metals
close to the paramagnetic Mott transition [27,28]. We note
that slow (or absent) formation of a quasiparticle band was
also observed in simulations of a photodopedMott insulator
[24], but in this case the origin of the behavior is less clear
because the final low temperature state is insulating.
It is important to note that τ� characterizes the slow

dynamics of the system around the crossover regime, but not
necessarily the subsequent reshaping of the quasiparticle
peak. Times larger than tmax cannot be studied systemati-
cally due to the increase of the numerical cost. The final
formation of the quasiparticle peak might bring in another
slow time scale related to the buildup of low energy spectral
weight of the rotor. Furthermore, after quasiparticles are
formed, slow dynamics can arise also from an ineffective
coupling of heavy electrons to phonons [29]. The observed
dynamical behavior arises from the DMFT self-consistency
and is thus a lattice effect. In contrast, the buildup of the
Kondo peak after a quench in the Anderson model is limited
only by energy-time uncertainty [15] (i.e., the formation of
the peak is complete after the inverse of its width), and this
behavior is also reproduced by the slave-rotor method [22].
A natural question for future studies is thuswhether a similar
electronic bottleneck time may appear in multiband
Hubbard models or the Kondo lattice model for heavy
fermions, where localized f or d orbitals interacting with
delocalized electrons give rise to the emergence of massive
quasiparticles. In this context it is also interesting whether
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one can identify the small energy scale related to the spinon
in numerically exact equilibrium calculations.
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