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The investigation of dynamical systems has revealed a deep-rooted difference between waves and
objects regarding temporal reversibility and particlelike objects. In nondissipative chaos, the dynamic of
waves always remains time reversible, unlike that of particles. Here, we explore the dynamics of a wave-
particle entity. It consists in a drop bouncing on a vibrated liquid bath, self-propelled and piloted by the
surface waves it generates. This walker, in which there is an information exchange between the particle and
the wave, can be analyzed in terms of a Turing machine with waves as the information repository. The
experiments reveal that in this system, the drop can read information backwards while erasing it. The drop
can thus backtrack on its previous trajectory. A transient temporal reversibility, restricted to the drop
motion, is obtained in spite of the system being both dissipative and chaotic.
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In physics, time reversal symmetry, i.e., the invariance of
the dynamical equations under the transformation t → −t,
is a general property of conservative systems. But, there is a
widely studied fundamental difference [1] in the temporal
reversibility of waves and particles. For waves, temporal
reversibility is preserved even in the presence of chaos.
This yields surprising possibilities as observed in optical
phase conjugation [2], time-reversed acoustics [3,4], micro-
waves [5], elastic waves [6], or surface waves [7,8]. For
particles, as demonstrated in, e.g., billiards, the temporal
reversibility is destroyed in the chaotic regimes by the
sensitivity to initial conditions.
Is time reversibility restored for a particle dynamics when

it is piloted by a wave? In the present work, we investigate
this question experimentally using a walker, a dynamical
entity associating a drop bouncing on a vertically oscillating
bath with the waves it generates [9–14]. We first show that
an imposed phase shift between the bouncing motion and
the surrounding waves leads naturally to a reversal of
the instantaneous drop velocity. Surprisingly, in chaotic
regimes, the same phase shift leads not only to a reversal of
the instantaneous velocity, but also to a reversal of the
motion along complex trajectories. This is equivalent to a
temporal reversibility, unexpected in a system both dissi-
pative and chaotic.We show that this property emerges from
a dynamical erasing process of the pregenerated wave field.
Eventually, we revisit the dynamics of thesewalkers in terms
of writing, storing, reading, and erasing processes. We show
that this system implements the basic elements of a Turing
machine using standing waves as a global information
repository.
Walkers are obtained in the experimental setups usually

devoted to the study of the Faraday instability [15]. A bath
of silicon oil of viscosity ν ¼ 2 × 10−2 Pas is oscillated

vertically with an acceleration γðtÞ ¼ γm cosð2πf0tÞ and a
frequency f0 ¼ 80 Hz. When the imposed oscillating
acceleration exceeds a threshold γF ≈ 4.5g, waves appear
spontaneously at the bath surface. These are parametrically
forced Faraday standingwaves oscillating at half the forcing
frequency: fF ¼ f0=2 [16]. Below but close to the Faraday
instability threshold (4g < γm < γF), a drop of typical
diameterD ¼ 600 μm of the same oil is observed to bounce
at half the forcing frequency fW ¼ f0=2. Correlatively, the
drop excites damped Faraday waves [11]. In this regime, the
drop becomes propelled by its interaction with the waves it
emits. At each collision with the bath, the drop receives a
kick in a direction determined by the local slope of the
interface. The resulting wave-induced force can be written
~Fm ¼ −C~∇h, where C is a coupling constant and ~∇h is the
surface height gradient evaluated at the impact point [10]. It
leads to a propelled motion at a velocity V0 ≈ 10 mm=s.
As sketched in Fig. 1, the drop vertical motion being

subharmonic, it can have two different phases relative to the
forcing oscillation. Having chosen arbitrarily an origin of
time, we can distinguish odd and even periods of the
forcing [respectively labeled A and B in Fig. 1(a)]. In
normal conditions, the bouncing is strictly subharmonic so
that a given drop hits the surface during either the A or the B
periods. The emitted waves are also subharmonic and
temporally synchronized with the bouncing phase of the
drop. An abrupt change of the drop bouncing from, e.g.,
phase A to phase B, therefore generates a π shift between
the drop periodic motion and the preexisting wave. The π
shift is induced by a brief and controlled disturbance of the
forcing oscillation, as sketched in Fig. 1(a). The amplitude
of the sinusoidal input γðtÞ is increased from γm to
γm þ Δγm during two periods T0 of the bath oscillation.
Regardless of the bouncing phase, the drop receives one
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single vertical kick of larger amplitude. For Δγm ¼
ð0.45� 0.02Þγm, the resulting free flight of the drop lasts
three periods instead of two. After this anomalous jump, the
drop bouncing phase is thus π shifted as compared to the
waves generated before the disturbance. These waves are
practically undisturbed by the forcing amplitude anomaly.
The drop thus collides with an opposed wave field h → −h
so that the horizontal component of the kick is reversed.
Figure 1(b) shows in perspective the detail of the drop
motion, as reconstructed from a fast camera recording at
800 fps and synchronized with the bath acceleration.
The transient increase of the free flight height (solid black
line) induces a π shift in the bouncing phase, as expected.
The reversal of the drop velocity is not necessarily
instantaneous since it is very sensitive to the time of the
first anomalous landing. In the case shown in Fig. 1(b),
three vertical bounces are observed before reversal. The
reversal duration δtπ lasting 0 < δtπ < 0.12 s has no visible
influence on the accuracy of the later backtrack motion
since Vδtπ ≪ λF.
The possibility of imposing abruptly a π shift provides a

tool to investigate a motion reversal in a memory-endowed
regime. The walker’s memory [11] is due to the persistence
of the standing waves partly sustained by Faraday forcing.
In the vicinity of the Faraday instability threshold γF,
each impact of the drop on the bath generates a localized
mode of Faraday standing waves of wavelength λF ¼
4.75 mm that can be approximated by a circular Bessel
function J0 centered at the collision point [11]. Since these
waves are partly sustained by the vertical forcing, each
Bessel wave decays slowly on a time scale τ determined by

the relative distance to the Faraday instability thresh-
old τ ≈ TFγF=ðγF − γmÞ.
The global field results from the linear addition of

standing waves previously created by Me ¼ τ=TF sources
distributed along the droplet recent trajectory. The resulting
global interference pattern thus contains a memory of the
followed path. In the present experimental setup, Me can be
tuned from 5 to approximately 200 by varying γm.
Whenever the walker’s motion is spatially confined, the

effect of memory was found to be determinant, leading to
stable or chaotic trajectories. In order to test the temporal
reversibility on various types of trajectories, we use a well-
documented experiment in which a walker is trapped in a
2d harmonic potential well of characteristic pulsation ω
[17,18]. The confinement is achieved by using drops
loaded with ferrofluid immersed in an axisymmetric
magnetic field gradient. In the short memory regimes,
the trajectories are circular and reversed by the velocity
reversal. For long memories (Me > 50), two regimes arise
depending on the width of the harmonic potential well Λ ¼
V0=λFω:Λ measures the mean extension of the drop
trajectory in units of the Faraday wavelength λF. In the
narrow band of values of Λ ≈ Λn;m, the walker follows
stable deterministic trajectories that can be in the shape of,
e.g., a circle, a lemniscate, or a trifolium, with a quantiza-
tion of the orbit size level n and angular momentum levelm
[17]. In all these cases, after the π shift, the wave-guided
drop turns back and follows the same orbit in reverse [see
Figs. 2(a) and 2(b)]. This means that the walker angular
momentum changes sign as expected from a time reversal.
We then turn to unsteady situations by choosing a value

of the confining parameter Λ that does not correspond to
any stable orbit. In this case, the trajectory is chaotic in the
sense of having a hypersensitivity to initial conditions. A
previous study has shown that the system is, however, still
deterministic with a small number of degrees of freedom
involved in spite of the complexity of both the drop
trajectory and the surrounding wave field [18]. After an
imposed phase shift, the drop is observed to return on its
track, following in reverse its complex past trajectory, as
shown in the two examples of Figs. 2(c) and 2(d).
Experiments performed for various values of the memory
ranging from Me ¼ 40 to Me ¼ 150 reveal that the typical
time of divergence increases with increasing memory
parameter. A dispersion of the divergence times is, however,
observed for each memory. In order to obtain quantitative
results, we perform statistical measurements on the corre-
lation between the initial and the reversed motion.
The drop trajectory is recorded during long-lasting

experiments with repeated π-shifts events equally spaced
in time with a periodicity of 10 s. This duration is longer
than the observed correlation times between the forward
and the backward paths. The times tπ of π shift events are
singled out using image processing and the known perio-
dicity of the imposed phase shifts. The correlation between
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FIG. 1. (a) Sketch of the time evolution of both the vertical
position of the bath (solid black line) and the drop position. On
the left, the drop bounces on the surface during periods A of the
forcing oscillation (solid blue line). A π shift is induced by a
transient increase of the imposed oscillation, after which the drop
bounces during periods B (solid red line). (b) A real droplet
trajectory as seen in perspective, reconstructed by particle
tracking from a zoomed-in high-speed movie before (blue line),
during (black line), and after (red line) the π shift.
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the forward and the backward motions is then measured
from the distance d between the droplet positions at two
times symmetrical with respect to the π shift dðΔtÞ, as
sketched in Fig. 2(f). A histogram of the distances dðΔtÞ is
plotted in Fig. 2(e) as a function of the elapsed timeΔt from
the π shift. The distances d remain small during a time Δt
of the order of Me=2 for all the imposed π shift. Control
experiments have then been done using the same exper-
imental parameters but without performing any π shift. The
observed motion is a highly chaotic trajectory. This chaos
had been investigated using a Poincaré return map [18].
In this regime, two trajectories with neighboring initial
conditions diverge from each other. In contrast, a π shift

forces the drop to return on a predetermined trajectory so
that during a finite time, the motion is reversed, even
though the dynamics is dissipative. It is the first observation
of an effect theoretically predicted by Devaney [19] that a
dynamical system (not necessarily conservative) is revers-
ible if there exists a transformation G in phase space that
reverses the direction of time and is also an involution (i.e.,
G composed with itself yields identity). In the present
study, a π shift is such an involution of the current
dynamics. In the very high memory limit (Me ≈ 150),
the motion of a walker is affected by fluctuations of its
velocity modulus. They appear to be a hindrance to a
further increase of the reversibility time.
An insight into this time reversal phenomenon is

provided by investigating the wave field. It can be recorded
as seen from above at 800 fps with a fast camera phase
locked on the bath oscillations. The effect of the π shift on
the wave field is best observed by extracting from these
recordings two films at half the forcing frequency and
corresponding to two observations strobed in phases A
and B, respectively (see Supplemental Material 1 [20]).
Figures 3(a) and 3(b) show two instantaneous wave fields
observed when the drop is moving (a) forward and
(b) backward, respectively. During its initial motion, the
bouncing of the drop builds up a wave field. It can be
observed by comparing Figs. 3(a) and 3(b) that the whole
wave field associated with the return motion seems to be of
smaller amplitude than that of the forward motion. This
effect can be analyzed quantitatively by computing the
wave field from the drop trajectory [11] (see detail in
Supplemental Material 2 [20]). The surface height at time t
in position ~ρ is given by

hð~ρ; tÞ ¼ h0
X
tn>tπ

J0ðkFjj~ρ − ~rðtnÞjjÞe−ðt−tnÞ=ðMeTFÞ

− h0
X

−∞<tn<tπ

J0ðkFjj~ρ − ~rðtnÞjjÞe−ðt−tnÞ=ðMeTFÞ;
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0

0

y/
F

 shift

0

0

x /

y/
F

 shift

(b)

(c)
F

x / F
0

0

 shift

x / F

y /
F (d)

0

0

x/

y/
F

 shift

(a)

F

0

0.5

1.5

1

2

200 40 60 80 100

20

0

40

60

80

N
um

be
r 

of
 o

cc
ur

re
nc

es
V(- t)

x

t
d

V(+ t)

M

M'

(e) (f)

t / TF

d/ F

FIG. 2. Trajectories observed before (solid blue line) and after a
π shift (solid red line) for various types of orbital motions.
(a) Stable circular orbit observed for Me ¼ 100 and
Λ ¼ Λ2;2 ¼ 0.9. (b) Stable lemniscate observed at Me ¼ 100

and Λ ¼ Λ2;0 ¼ 0.75. (c),(d) Chaotic regimes for Me ¼ 70, Λ ¼
0.49 and Me ¼ 180, Λ ¼ 0.82. In the two latter cases, the drop
motion is reversed on a trajectory length of the order of
δ=2 ¼ V0MeTF=2. (e) Histogram of the temporal evolution of
the distance dðtÞ [as defined in (f)] of the drop position at two
times symmetrical with respect to the time tπ of the phase shift.
This color-coded histogram was obtained from N ¼ 250 trajec-
tories. Time is expressed in number of bounces.

FIG. 3. Direct visualisation of the wave field observed during
the (a) forward and the (b) backward motion of the drop. The
forward (blue arrow) and backward (red arrow) trajectories have
been superimposed.
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where h0 is the initial amplitude of wave and ~rðtnÞ is the
impact position at time tn. Before and after tπ, the wave
sources only differ from a phase π. Therefore, during the
backward motion, each bounce emits a wave of opposite
phase that interfere with the previously generated waves. A
quantitative measurement of this phenomenon is obtained
from an analysis of the normalized global energy of the
wave field [13]:

EWðtÞ ¼
1

h20

ZZ
½hð~ρ; tÞ�2dS=

ZZ
½J0ð~ρ; tÞ�2dS; ð2Þ

where EW has been normalized by the energy of a single
impact source J0. Figure 4(a) shows the histogram of the
evolution of EW=EWðtπÞ as a function of time before and
after a π shift taken as the origin of time. It has been
computed from 324 trajectories obtained at Me ¼ 70� 15.
After the π shift, the total energy EW=EWðtπÞ is observed to
decrease down to 0.35 of its initial value. This minimum is
reached at a time t approximately equal to Me=2. It
corresponds to the period of time during which the droplet
backtracks. As sketched in Figs. 4(c) and 4(d), the new
emitted waves have a phase opposite to the initial ones so

that they erase step by step the previous wave field. The
new wave being more recent has an amplitude that exceeds
that of the old one by an exponential factor e−2ðt−tπÞ. This
effect grows in time, and for times larger than Me=2, a new
wave field is generated and the trajectory diverges again.
The first and main result is that the availability of intrinsic

recorded information about the past can make a temporal
reversibility possible for an elementary system even in
dissipative and chaotic conditions. Our second result is
the finding of a wave erasing process. It gives strength to the
description of walker dynamics as an implementation of an
iterative computing process. The internal clock is here
provided by the periodicity TF of the Faraday waves and
the vertical bouncing motion. At each drop bounce, the
generation of a standing Bessel wave can be interpreted as a
writing process by which the drop encodes positional
information in an extended wave field. Because of the
parametric forcing of this wave field, the positional infor-
mation is maintained for a given time, which corresponds to
a storing process in a wave field. At each new bounce, the
drop as it comes in close contact with the bath receives a
horizontal kick proportional to the local slope. It corre-
sponds to a reading process in which the stored information
determines the drop’s next jump. To these three basic
operations (writing, storing, and reading), we have added
the existence of the fourth basic elementary operation: the
erasing process, which can be here triggered by an imposed
π shift on the bouncing phase of the drop. The specificity and
the associated richness of this iterative machine rely here on
the way the information is written, stored, and processed.
Each individual positional information is stored in a global
wave field, submitted to the superposition principle of
waves. The walker can in that sense be termed as a wave
Turing machine. With the present control of the bouncing
phase, the wave memory can be written or erased on
demand. This dynamical information storage through a
global wave memory can thus be controlled. Even though
the present system is unpractical, the finding of similar
coupling with waves of a different nature could lead to
computing possibilities.
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