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While the dynamics of complete wetting has been widely studied for liquids, the way a gas spreads on a
solid is by far less known. We report here the events following the rise of a millimeter-size air bubble
towards a textured material immersed in water and covered by a thin plastron of air. Bubbles contact the
material either directly at the end of the rise, or after a few rebounds, which affects the initial shape of the
bubble and the resulting dynamics of contact. Then, air spreads on the material, owing to surface tension
and later buoyance, which tends to flatten further the bubble. The corresponding dynamics are shown to
result from the inertial resistance of water, which explains how spreading bubbles reach centimeter sizes in
typically 10 ms.
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How liquids spread on wettable solids has been a major
topic of interfacial hydrodynamics since the 1980s [1].
Drops whose flattening minimizes surface energy are first
driven by surface tension γ [2]; above the capillary length a,
spreading results from gravity, since the liquid density ρ is
larger than that of surrounding air [3]. Resistance to motion
has also been extensively discussed [4]. Friction at short
scale is dominated by the dissipation close to the moving
contact line, where viscous effects are enhanced [5].
Balancing this “line friction” with surface tension leads
to Tanner’s law: rðtÞ ∼ ðγΩ3t=ηÞ1=10, where Ω is the drop
volume and η the liquid viscosity [2]. At large scale, line
friction is overcome by bulk friction whose balance with
gravity leads to Huppert’s law: rðtÞ ∼ ðρgΩ3t=ηÞ1=8 [3].
The crossover between both regimes occurs around a,
above which gravity dominates surface tension.
Here we consider bubbles spreading on aerophilic solids

[Figs. 1(a) and 1(b)]. This can be seen as the complementary
problem of wetting drops, where the two fluid phases have
been exchanged. Bubble spreading is achieved using super-
hydrophobic materials [6], which are “wet” by air once
immersed in water [7]. This property is exploited by insects
and even mammals hiding or hunting underwater, and
observed to be covered by a persistent plastron of air,
serving as an oxygen reservoir or thermal insulator [8–10].
Wang et al. looked at the impact of bubbles on submerged
lotus leaves and reported a rapid spreading of air, with a
characteristic time of about 10msec [11], smaller by far than
that of water wetting solids, on order of minutes to hours at
centimetric scales [3]. Our aim is to quantify the dynamics of
bubble spreading, and to understand its physics.
Our surfaces are made by dipping centimetric glass slides

into a solution of silanized silica nanobeads with diameter
30 nm (Glaco, Soft99). After solvent evaporation, the
coating is consolidated at 250 °C for 30 min. Surfaces are

transparent with a typical roughness Δz ¼ 100 nm imaged
by AFM in Figs. 1(c) and 1(d). These slides are aerophilic:
once immersed at speed V in water, they are always coated
by a plastron of air [12,13]. At large V, air thickness ε is
given by the Landau-Levich law ε ≈ aðηaV=γÞ2=3 [14], with
ηa the air viscosity. ForV ≈ 10 mm=s, we have ε ≈ 100 nm,
that is, the characteristic roughness Δz of the solid. This
thickness just corresponds to the filling of cavities by air: if
we immerse the slide at V ¼ 1–10 mm=s, ε plateaus at the
value ε ¼ Δz [15], which yields a film of reproducible
thickness.
Slide sides sit on solid blocks adjusted to provide

horizontality. Air bubbles with radius R between 0.92
and 1.87 mm and released from calibrated needles located
3 mm to 1 cm beneath the slide rise at a velocity ranging
from 20 to 30 cm=s until they reach the plate. The water

(a) (c)

(d)(b)

FIG. 1. Experimental setup and materials. (a) An air bubble of
radius R approaches a flat horizontal aerophilic slide (in red)
immersed in water and covered by a thin film of air. (b) After
contact, spontaneous spreading occurs and the bubble is char-
acterized by its height hðtÞ and radius rðtÞ. (c) AFM image in the
plane (x, y) of the surface showing its nanometric textures.
(d) AFM profile along the dashed line in (c): the typical variation
Δz of the height zðx; yÞ is Δz ≈ 100 nm.
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tank is cubic with straight walls to avoid optical aberra-
tions, and filled with deionized water. Observations are
made with a high-speed video camera (Phantom Miro
M310) at 23 000 fps (frames per second). Snapshots in
Figs. 2(a) and 2(b) show that rising bubbles are dynami-
cally flattened [16,17]. At the plate, either they bounce back
[Fig. 2(a) and blue data in Figs. 2(c) and 2(d)] and
eventually adopt a spherical shape, or they stop with a
flattened shape at the surface, which they contact after a
short delay [Fig. 2(b) and pink data in Figs. 2(c) and 2(d)].
Statistics over 100 bubbles indicate that the bouncing
probability falls from 100% for hydrophilic and hydro-
phobic solids to 40% for our aerophilic plates [Fig. 2(c)].
Contact [plain circle in Fig. 2(d)] naturally occurs earlier
when there is no rebound.
Bubbles generally bounce when they meet solids

[18,19], due to the lubrication pressure in the film as water
is evacuated [20,21]. The rebounds are soft [Fig. 2(d), blue
data], so that bubbles slow down and eventually reach a
spherical shape, as seen in Fig. 2(a). However, the thin film
of air on the material can induce slip, as water is squeezed
by the rising bubble. Owing to this efficient drainage, the
bubble can stop without bouncing and keep its dynamic
shape at contact [Fig. 2(b) and pink data in Figs. 2(c) and
2(d)]. We successively consider these two initial situations.
We first discuss the case of flattened bubbles, and Fig. 3
shows for five similar experiments how the bubble-plate
radius r grows as a function of time t, whose origin is taken
at the first moment of contact.
We can identify three dynamical stages in Fig. 3, as

stressed by colors. The first regime (in green) concerns very
short times (t < 0.2 ms). It is shown in Fig. 3(a) where
movies are shot from the top through the transparent plate,
at a rate of 70 000 fps. The contact (r < R) propagates
without modifying the global shape of the bubble. In this
regime, its radius r increases linearly with time t as
highlighted by the line of slope 1 drawn in Fig. 3(d).
Water between the flat bubble and the plate is squeezed
between air and an aerophilic material coated by air. The
contact expands as this water film of thickness δ retracts,

which generates the rim seen in Fig. 3(a). As modeled by
Taylor [22] and Culick [23], the balance of surface tension
2γ with inertia ρδV2 yields a constant retraction velocity
V ¼ ð2γ=ρδÞ1=2. Hence a linear growth for the contact

rðtÞ ¼
�
2γ

ρδ

�
1=2

t: ð1Þ

Experiments in this regime provide reproducible veloc-
ities of 4.0� 0.4 m=s, which, using Eq. (1), implies a film
thickness δ ¼ 9� 2 μm. Measuring water thickness from
macrophotos, we get on ten experiments δ ¼ 15� 5 μm,
close to the expected value.
At a time t ≈ Rðρδ=2γÞ1=2 ≈ 0.3 ms, the scale R of the

bubble separates the regime of contact (r < R) from
spreading in the true sense (r > R). Then a second regime
(marked in red) takes place and the bubble is observed in
Figs. 3(c) and 3(d) to expand as tα, with α ¼ 0.35� 0.04.
As for spreading drops, we assume that motion is driven by
surface tension that tends to flatten the water-air interface
[Fig. 3(b)], whose curvature scales as h=r2, denoting the
bubble radius and height as r and h. The expanding bubble
of volume Ω displaces a volume of water comparable to Ω
at a typical velocity V ¼ dr=dt of 1 m=s [Fig. 3(d)]. The
corresponding Reynolds number ρRV=η is 103, much
larger than unity. Therefore, we assume that the dominant
resistance is water inertia. Using volume conservation
Ω ∼ hr2, the balance of dynamical pressure ρV2 with
Laplace pressure γh=r2 leads to

rðtÞ ≈
�
γΩ
ρ

�
1=6

t1=3: ð2Þ

This inertiocapillary regime is markedly different from
Tanner’s dynamics in t1=10 [2]. The exponent 1=3 drawn
with a red line in Fig. 3(d) is in good agreement with the
data. Equation (2) predicts a typical expansion of 1 mm in
1 ms for a millimetric bubble, again in accordance with
observations. In the case of partial wetting, we expect

(a)

(b) (c)

(d)

FIG. 2. Bubble dynamics before contacting an aerophilic plate, with R ¼ 1 mm. (a) Either bubbles bounce off the surface (b) or stop
without rebound. Images are separated by 3.1 ms and the final picture in each set is the last frame before contact [delayed in (a) due to
bouncing]. Corresponding movies are movies 1 and 2. (c) Probability of bouncing (in blue) against hydrophilic, hydrophobic, or
aerophilic plates. (d) Bubble depth d as a function of time t: the blue and pink curves show typical trajectories for bouncing and
nonbouncing bubbles, respectively. Plain circles indicate the last moment before contact with the plate.

PRL 117, 094501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

26 AUGUST 2016

094501-2



bubbles to stop at a radius comparable to their size, so that
spreading should only obey Eq. (2), as indeed shown in the
Supplemental Material [24].
The dynamics in Fig. 3(d) bends up when the radius

becomes 2–3 mm. This corresponds to a change in bubble
shape from curved [Fig. 3(b)] to flat [Fig. 3(c)]. For
r > a ¼ ðγ=ρgÞ1=2 (2.5 mm for water), hydrostatic pressure
ρgh overcomes Laplace pressure γh=r2, and it drives
spreading. At such scale and dr=dt ∼ 1 m=s, motion
remains resisted by water inertia, and the new pressure
balance, ρV2 ∼ ρgh, yields

rðtÞ ≈ ðgΩÞ1=4t1=2: ð3Þ

In this inertiogravitational regime, bubble dynamics also
differs from that of viscous puddles in t1=8 [3]. Spreading
still obeys a scaling law, whose exponent 1=2 fits data in a
satisfactory way [blue line in Fig. 3(d)] and reflects the
inflection of the dynamics beyond r ≈ a, at the crossover
between Eqs. (2) and (3).
We tested the universality of the spreading laws by

varying the volumeΩ and viscosity η (by adding glycerol to
water). In Fig. 3(e), the contact radius r normalized by the
capillary length a is plotted as a function of time t scaled by
τ ¼ a2=ðgΩÞ1=2. In both regimes, the successive scaling
laws are close to that predicted by Eqs. (2) (r=a ≈ ðt=τÞ1=3)

and (3) (r=a ≈ ðt=τÞ1=2). Numerical coefficients deduced
from fits are of order unity, with respective values of 2.1�
0.1 and 3.1� 0.4. In the gravitational regime, the presence
of waves at the bubble surface (usual in inertial regimes)
might slightly affect the dynamics of the smallest bubbles.
As stressed earlier, globules at contact can also be

spherical [Fig. 2(a)]. This initial difference should not
modify the spreading stage (r > R), but it necessarily
affects the short-time dynamics, since water between a
spherical bubble and a flat solid does not have a constant
thickness. As shown in Fig. 4(b), the whole dynamics
now looks unique and characterized by a slope ½, with a
regime of contact (r < R, in green) indeed modified
compared to the previous case [Eq. (1)]. This can be
understood by considering that the thickness δ in Culick’s
law [dr=dt ¼ ð2γ=ρδÞ1=2] depends on r. For a sphere-plane
geometry, δ scales as r2=R, which yields

rðtÞ ≈
�
γR
ρ

�
1=4

t1=2: ð4Þ

The dynamics is close to that of spherical bubbles
merging in water reported by Paulsen et al. [25]. Munro
et al. provide an analytical expression for the growth of
contact between such bubbles [26]. The contact size obeys
the scaling of Eq. (4) with a numerical coefficient

(a) (b) (d)

(c)

(e)

FIG. 3. Spreading of a flattened bubble. (a) Top view of the propagation of contact (movie 3); interval between images isΔt ¼ 0.1 ms.
(b) In the following regime of spreading (seen from the side for t > 1.4 ms and Δt ¼ 0.21 ms), the contact radius r expands beyond the
radius R of the initial bubble. (c) Later (t > 7.5 ms and Δt ¼ 1.7 ms), the bubble spreads in a much flatter configuration. Movie 4
corresponds to b and c. (d) Contact size r as a function of time t for R ¼ 1 mm, for five similar experiments (noted with different
symbols). In this log-log plot, r obeys three successive scaling laws of exponents 1, 1=3 and 1=2 (green, red, and blue lines).
(e) Dimensionless contact radius r=a as a function of time t normalized by τ ¼ a2=ðΩgÞ1=2. Colors and symbols respectively stand
for bubble size [R ¼ 1.0 (red); 1.3 (blue); 1.5 (green); 1.9 mm (purple)] and water viscosity [η ¼ 1 (dots); η ¼ 2 (circles);
η ¼ 3 mPa s (stars)].
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ð32=3Þ1=4 ≈ 1.8, as calculated by Munro et al. The coef-
ficient deduced from the fit in Fig. 4(b) is 2.5� 0.1, slightly
larger than 1.8: there is less water to evacuate in a bubble-
plate geometry, and smaller inertia leads to faster dynamics.
The average radius is Rav ¼ 2R, which induces an addi-
tional factor of 21=4 compared to the case of two spheres of
radius R. The corresponding coefficient is ð64=3Þ1=4≈
2.15, in closer agreement to our data.
Once contact is established (r ≈ R), spreading should

follow the laws derived earlier. But the first and third
regimes [Eqs. (4) and (3)] now both scale as t1=2, as indeed
seen in Fig. 4(b). A capillary regime of slightly smaller
exponent [that is, 1=3, see Eq. (2)] can only match the
regimes in t1=2 if the coefficient of t1=2 is larger in Eq. (4)
than in Eq. (3). Since Ω scales as R3, the ratio between
these two coefficients reduces to ða=RÞ1=2. This quantity of
order unity slowly varies with the bubble size, which
explains the quasicontinuity of data in Fig. 4(b). We notice
that a capillary regime in t1=3 cannot match the first and
third regimes in t1=2 if ða=RÞ1=2 is smaller than unity. Self-
consistently, bubbles with R > a are deformed by gravity
and cannot be quasi-spherical at contact. The spreading
dynamics of a larger bubble deformed by gravity after
bouncing, hence having a flattened shape before contact, is
shown in Ref. [24] to bring us back to the successive
regimes observed in Fig. 3.
Spreading drops and bubbles have common features and

marked differences. In both cases, liquid-air interfaces
deform and flatten under the action of surface tension
and gravity. A cascade of scaling laws is observed, but
exponents are found to be much larger for bubbles, which is
attributed to the prevalence of inertia over viscosity. For
bubbles, viscous resistance might exist both inside the

displaced liquid and in the wedge of air progressing at a
velocity V. In the wedge of dynamic contact angle θ, the
Huh-Scriven “line friction” integrated over a bubble of size
R scales as ηaVR=θ [5]. If we assume Tanner’s law for the
contact angle, that is, θ ≈ ðηaV=γÞ1=3, we can construct a
special Reynolds number comparing liquid inertia and
wedge dissipation. It can be written Re ¼ WeCa−2=3,
where We ¼ ρRV2=γ and Ca ¼ ηaV=γ are the Weber
number in water and capillary number in air. For a velocity
of 1 m=s, these numbers are 10 and 10−3 and Re is about
103, much larger than unity. As shown in Fig. 4(b) (and the
Supplemental Material [24]), a bubble made of neon 1.6
times more viscous than air indeed spreads the same way.
Viscous dissipation also takes place inside the liquid,
and its comparison with inertia results in a “usual”
Reynolds number Re ¼ ρRV=η ≈ 103 ≫ 1. Hence bubbles
spreading in liquids of viscosity η ¼ 1, 2 and 3 mPa s have
undistinguishable dynamics [Fig. 3(d) and Supplemental
Material [24]].
Bubbles in water wetting an aerophilic plate have a

characteristic spreading time τ much shorter than in usual
spreading. This time was found to scale as a2=ðgΩÞ1=2, a
quantity on the order of 10 ms, in agreement with our
observations [Figs. 3(d) and 4(b)] and with that by Wang
et al. for air spreading on immersed lotus [11]. It would be
interesting to see how spreading is affected when largely
increasing the viscosity of the surrounding liquid. Also, the
capillary regime inwater can only hold betweenR anda, that
is, 1 and 2–3 mm. It would be worth testing this regime in
microgravity, where we do not expect buoyance to limit it.
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