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We study the poles of the retarded Green’s functions of strongly coupled field theories exhibiting a
variety of phase structures from a crossover up to a first order phase transition. These theories are modeled
by a dual gravitational description. The poles of the holographic Green’s functions appear at the frequencies
of the quasinormal modes of the dual black hole background. We establish that near the transition, in all
cases considered, the applicability of a hydrodynamic description breaks down already at lower momenta
than in the conformal case. We establish the appearance of the spinodal region in the case of the first order
phase transition at temperatures for which the speed of sound squared is negative. An estimate of the
preferential scale attained by the unstable modes is also given. We additionally observe a novel diffusive
regime for sound modes for a range of wavelengths.
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Introduction.—One of the most surprising discoveries in
contemporary theoretical physics, the anti–de Sitter/con-
formal field theory (AdS=CFT) correspondence [1], pro-
vides for us a way to investigate the dynamics of strongly
coupled quantum field theories by means of general
relativity methods. An important field of research exploit-
ing this new relation between geometry and physics aims at
exploring the real-time dynamics of strongly interacting hot
matter [2]. In particular, real-time response of a thermal
equilibrium state has been quantified in the case of N ¼ 4
super-Yang-Mills theory by means of the poles of the
retarded Green’s function [3]. The locations of these poles
correspond to quasinormal mode (QNM) frequencies in the
dual gravitational theory. Initial steps towards the extension
of this case to nonconformal field theories that still admit a
gravitational dual description were taken in Ref. [4,5]
where QNM frequencies of an external scalar field were
studied.
In this Letter we take another step in quantifying real-

time response of a strongly coupled nonconformal field
theory. First, we analyze all allowed channels of energy-
momentum tensor perturbations and corresponding two-
point correlation functions. Secondly, we concentrate on
the phenomena appearing in the vicinity of a nontrivial
phase structure of various type: a crossover (motivated by
QCD), a second order phase transition, and a first order
phase transition. These cases are modeled by choosing
appropriate scalar field self-interaction potentials in a
holographic gravity-scalar theory used in [6]. We focus
here on phase transitions postponing more details of the
other cases to [7]. Thirdly, we concentrate on the lowest
nonhydrodynamic QNM in relation to the hydrodynamic
ones as this provides insight into the range of applicability
of the hydrodynamic description.
Because of the ubiquity of employing a hydrodynamic

description for quark gluon plasma it is important to

understand its limitations and the influence of other non-
hydrodynamic degrees of freedom. Let us emphasize,
however, that in the present investigation we are targeting
quite different physics from “early thermalization” that has
so far been predominantly studied within the AdS=CFT
correspondence. Here we expect that the plasma has
already thermalized, which could occur at higher temper-
atures, e.g., in the almost conformal regime. Indeed, the
investigations of [4,5] indicate that nonconformality should
not influence this physics much. Subsequently the plasma
cools and approaches a phase transition of appropriate type
or a crossover. It is this final stage of plasma evolution that
we are considering in this Letter and, in particular, the
pattern of excitations of such a plasma system and the range
of applicability of a hydrodynamic description in the
vicinity of a phase transition.
The background.—The black hole background (BH)

solutions for the QNM calculations follow from the action

S ¼ 1
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where κ5 ¼
ffiffiffiffiffiffiffiffiffi
8πG

p
and VðϕÞ is thus far arbitrary. These

solutions are similar to those studied in Ref. [6], but since
our goal is to determine the quasinormal mode frequencies,
it is convenient to express them in Eddington-Finkelstein
coordinates, which have been proven useful in the case of
the scalar field modes [4]. The line element reads

ds2 ¼ e2AðrÞ½−hðrÞdt2 þ d~x2� − 2eAðrÞþBðrÞdtdr; ð2Þ

and for the scalar field ϕðrÞ ¼ r. Since we require that
asymptotically the geometry is that of AdS space the
potential needs to have the following small ϕ expansion:
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VðϕÞ ¼ −
12

L2
þ 1

2
m2ϕ2 þOðϕ4Þ: ð3Þ

Here L is the AdS radius, which we set L ¼ 1 by the
freedom of the choice of units. The relation of the scalar
mass and corresponding operator conformal dimension is
ΔðΔ − 4Þ ¼ m2. In general we consider a family of
potentials [6,8],

VðϕÞ ¼ −12ð1þ aϕ2Þ1=4 coshðγϕÞ þ
X3
n¼1

b2nϕ2n; ð4Þ

with parameter values shown in Table I. The a ¼ 1 case is
called the improved holographic QCD (IHQCD) [8]. We
are interested in solutions possessing a horizon, which
requires that the function h should have a 0 at some
ϕ ¼ ϕH, i.e., hðϕHÞ ¼ 0. We solve the coupled equations
of motion using spectral discretization and the Newton-
Raphson iterative algorithm. The corresponding equations
of state are obtained from standard procedures in holog-
raphy. The entropy sðϕHÞ is obtained from 1=4 of the area
of the horizon, while the temperature TðϕHÞ is obtained
from the nonsingularity of the Euclidean horizon.
Consequently one gets the EoS in the form of a temperature
dependence of the entropy sðTÞ.
In the case of the V1st potential (cf., left panel of Fig. 1)

there are two stable black hole branches at low (small BH)
and high (large BH) temperatures. They are separated by a
branch of black holes that exhibit spinodal instability. A
first order phase transition appears at the temperature Tc ≃
1.05Tm between large and small black hole solutions [7].
For the V2nd potential the system exhibits a second order
phase transition at T ¼ Tc that is defined by csðTcÞ ¼ 0 [6]
(cf., left panel of Fig. 1). The specific heat critical exponent
is α≃ 0.658 [7].
Quasinormal modes.—We consider perturbations of the

background in the following form: gabðr; zÞ ¼ gð0Þab ðrÞþ
habðrÞe−iωtþikz, ϕðr; zÞ ¼ rþ ψðrÞe−iωtþikz. Following
[3,4] we consider infinitesimal diffeomorphism transfor-
mations, xa↦xa þ ξa, of the form ξa ¼ ξaðrÞe−iωtþikz, and
look for linear combinations of metric and scalar perturba-
tions that are invariant under those transformations. There
are four families of such modes, two of which are

decoupled and two of which are coupled. Written explicitly,
the coupled modes read

Z1ðrÞ ¼ HaaðrÞ
�
k2h0ðrÞ
2A0ðrÞ þ k2hðrÞ − ω2

�

þ k2hðrÞHttðrÞ þ ω½2kHtzðrÞ þ ωHzzðrÞ�; ð5Þ

Z2ðrÞ ¼ ψðrÞ −HaaðrÞ
2A0ðrÞ : ð6Þ

In the above haaðrÞ ¼ hxxðrÞ ¼ hyyðrÞ are transverse met-
ric components and we have factorized the background
from the metric perturbations in the following way:
httðrÞ ¼ hðrÞe2AðrÞHttðrÞ, htzðrÞ ¼ e2AðrÞHtzðrÞ, haaðrÞ ¼
e2AðrÞHaaðrÞ, hzzðrÞ ¼ e2AðrÞHzzðrÞ. Comparing with
Ref. [3] we can see that the Z1ðrÞ mode corresponds to
the sound mode, while the Z2ðrÞ might be called a
nonconformal mode, since it is intimately related to the
scalar field. The third decoupled mode is the shear one
and is expressed as Z3ðrÞ ¼ HxzðrÞ þ ðω=kÞHtxðrÞ. The
dynamics of the fourth mode is governed by an equation of
motion that is similar to the external massless scalar
equation, which was studied in [4]. As usual at the horizon
we take the ingoing boundary conditions, which in our
coordinates means a regular solution. The conformal
boundary (r ∼ 0) asymptotic is

Z1ðrÞ ∼ A1 þ B1rð4=4−ΔÞ; Z2ðrÞ ∼ A2rþ B2rðΔ=4−ΔÞ:

ð7Þ
Transformation to the usual Fefferman-Graham coordinates
close to the boundary, r↦ρ4−Δ, reveals that Z1ðρÞ has the
asymptotics of a massless scalar field like the perturbations
considered in [3]. This perturbation corresponds to the
sound mode of the theory. On the other hand Z2ðρÞ has the
asymptotics of the background scalar field ϕ and is similar
to the case studied in [9]. According to the AdS=CFT
dictionary the boundary conditions are the requirement of
vanishing sources, i.e., A1 ¼ A2 ¼ 0. The shear mode
perturbation Z3ðrÞ has the same asymptotics as Z1ðrÞ
and requires a standard Dirichlet boundary condition
at r ¼ 0.

TABLE I. Potentials chosen to study different equations of state
(EoS) exhibiting different phase structure and corresponding
conformal dimension of the scalar field.

Potential a γ b2 b4 b6 Δ

VQCD 0 0.606 1.4 −0.1 0.0034 3.55
V2nd 0 1=

ffiffiffi
2

p
1.958 0 0 3.38

V1st 0
ffiffiffiffiffiffiffiffiffiffi
7=12

p
2.5 0 0 3.41

VIHQCD 1
ffiffiffiffiffiffiffiffi
2=3

p
6.25 0 0 3.58
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FIG. 1. Left panel: equation of state for V1st potential with
different regions marked. The meeting point of red and green
lines defines the corresponding minimal temperature Tm. Right
panel: equation of state for V2nd.
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The problem of determining the quasinormal frequencies
is a form of a generalized eigenvalue equation, which for
given k results in a well-defined set of frequencies ωðkÞ [7].
Note that all modes, for which ReωðkÞ ≠ 0, come in pairs,
i.e., ωðkÞ ¼ �jReωðkÞj þ iImωðkÞ.
Results.—For all the potentials we have made natural

consistency checks. For high temperatures, i.e., small
horizon radius in the sound and the shear channels, we
have an agreement with the conformal results of Ref. [3].
An important thing to note here is that due to the coupled
nature of the modes Z1ðrÞ and Z2ðrÞ all frequencies, except
for the hydrodynamical one, come in pairs. This effect is
present even at high temperatures, where the system is
expected to be conformal. The second most damped
nonhydrodynamic mode turns out to be the most damped
one found in Ref. [3].
The hydrodynamical QNMs are defined by the condition

limk→0ωHðkÞ ¼ 0, and are related to transport coefficients
in the following way, ω≃ −iðη=sTÞk2, ω≃�csk − iΓsk2,
respectively, in the shear and sound channels. Those
formulas are approximate in the sense that in general
higher order transport coefficients should be considered
[10]. However, for appropriately small momenta, second
order expansion is enough, and we use it to read off the
lowest transport coefficients of the model. The sound
attenuation constant, Γs, is related to shear η and bulk ζ
viscosities by Γs ¼ ½ðζ þ 4η=3Þ=2sT�. Also these formulas
were used to make a second check of the results: compute
the speed of sound cs from the hydrodynamic mode and
values of the shear viscosity and compare it respectively to
the ones obtained from the gravitational background
calculations and predictions known in the literature
[11,12]. Both of them are always satisfied, and η=s ¼
1=4π in all cases considered in this Letter.
In the analysis below we measure the momentum and the

frequency in the units of temperature by setting
q ¼ k=2πT, ϖ ¼ ω=2πT. There are a few novel observa-
tions that we make from the pattern of QNM frequencies.
The first is an estimate of the momentum, or equivalently
the length scale, at which the hydrodynamic description of
the plasma system breaks down. For the CFT case this was
estimated to be q ¼ 1.3 where in the shear channel first
nonhydrodynamic QNM dominated the system dynamics
[13], being less damped than the hydrodynamic shear
mode. The new effect we find is that away from con-
formality, in the vicinity of a phase transition, we see this
crossing not only in the shear channel but also in the sound
channel, as illustrated in Fig. 2. This shows that the
influence of a nontrivial phase structure of the background
affects the applicability of hydrodynamics in a qualitative
way. Moreover, the momentum at which this crossover
happens in the sound channel is smaller, which means that
the applicability of hydrodynamics near the phase tran-
sition is more restricted than in the high temperature case.
In Table II we summarize the critical values of momenta

where the hydrodynamic description of the system breaks
in sound and shear channels for the potentials we consid-
ered in this Letter.
The second observation is the bubble formation in the

spinodal region in the case of the first order phase transition
[15]. This happens when c2s < 0, which means that the
hydrodynamic mode is purely imaginary, ωH ¼ �
ijcsjk − iΓsk2. For small k, the mode with the plus sign
is in the unstable region, i.e., ImωH > 0. For larger
momenta the other term starts to dominate, so that there
is kmax ¼ jcsj=Γs for which the hydromode becomes again
stable. The scale of the bubble is the momentum for which
positive imaginary part of the hydrodynamic mode attains

FIG. 2. Quasinormal modes for the potential V2nd at Tc: real
part (upper panel) and imaginary part (lower panel). The speed of
sound and the ratio of bulk viscosity to the entropy density are
calculated, namely, cs ≃ 0, ζ=s≃ 0.061 (cf. [14]).

TABLE II. The momenta for which the crossing phenomena
between the hydrodynamic and first nonhydrodynamic QNM
happen. Values are given at corresponding critical temperatures
(Tm for V1st and VIHQCD).

Potential Sound channel qc Shear channel qc

VQCD 0.8 1.1
V2nd 0.55 0.9
V1st 0.8 1.15
VIHQCD 0.14 1.25
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the maximal value. The imaginary part of the unstable
hydrodynamic mode is called the growth rate [15], and is
illustrated in the inset in Fig. 3. This phenomenon is
very similar to a Gregory-Laflamme instability [16].
When ωH is purely imaginary, one can express it as ωH ¼
�iOðkÞ − iEðkÞ, withOð−kÞ ¼ −OðkÞ andEð−kÞ ¼ EðkÞ.
Then there are two separated branches of the hydrodynamic
modes, as seen on Figs. 3 and 4. In summary, in all cases
considered, whenever there was an indication of thermody-
namic instability in equations of state, the lowest QNM
displayed a dynamical instability. Also, nonhydrodynamic
modes were always stable, even for large k. This supports the
expectation spelled out in Ref. [17].
The third observation is that near the minimal temperature

in the case of first order phase transition the hydrodynamic
mode (cf. Fig. 4), and in the IHQCD case also the lowest
nonhydrodynamic modes, become purely imaginary for a
range of momenta [7]. The interpretation of this fact is that
the corresponding wavelengths cannot propagate at a lin-
earized level, and there is a diffusionlikemechanism for those
modes. The onset of the appearance of a nonpropagating
sound mode in the deeply overcooled phase has been
observed earlier in a related model [18]. Our analysis shows
that the range of momenta for which the nonpropagating
mode appears is finite. It is important to note that generically
the ultralocality [4] of the nonhydrodynamic mode is still

present in the critical region of the phase diagram. The only
exception observed is the IHQCDpotential,where themodes
exhibit a nontrivial behavior [7]. Most of the interesting
dynamics and effects observed are due to the different
behavior of the hydrodynamic modes. This includes the
instability and the bubble formation in the case of the first
order phase transition. However, no interesting structure in
QNMs appears atTc (in contrast to the vicinity ofTm), which
suggests that at the linearized level one cannot detect the
transition.
Conclusions.—In the present Letter we performed an

extensive study of the linearized dynamics of excitations
in strongly coupled field theories in thevicinity of a nontrivial
phase structure of various kinds. We observed a number of
novel features that were not present in the conformal case.
First, for relatively small k, the propagating hydrodynamical
sound modes become more damped than the lowest non-
hydrodynamic degrees of freedom. This provides a more
stringent restriction on the applicability of hydrodynamics
and indicates the necessity of incorporating these other
degrees of freedom on appropriate length scales. This is in
contrast to the conformal case where a similar phenomenon
only occurred in the shear channel and only at a higher value
of k. Secondly, we explicitly determined the instability in the
spinoidal branch of a first order phase structure and estimated

FIG. 3. Sound channel quasinormal modes for the potential V1st
at T ≃ 1.067Tm ≳ Tc in the unstable region of the EoS. An
instability of the spinodal region is shown in the inset.

FIG. 4. Quasinormal modes for the potential V1st at T ≃
1.00004Tm in the stable region of the EoS, below the transition
T < Tc ≃ 1.05Tm: real part (upper panel) and imaginary part
(lower panel).
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the length scale for bubble formation. Thirdly, close to the
point T ¼ Tm on the first order equation of state, the sound
mode frequencies become purely imaginary for a range of
momenta, thus indicating that these modes effectively do not
propagate at these length scales. The richness of phenomena
appearing in the linearized regime strongly suggests that it is
important to study the corresponding real-time dynamics
also at the nonlinear level.
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