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As experiments are increasingly able to probe the quantum dynamics of systems with many degrees of
freedom, it is interesting to probe fundamental bounds on the dynamics of quantum information. We
elaborate on the relationship between one such bound—the Lieb-Robinson bound—and the butterfly effect
in strongly coupled quantum systems. The butterfly effect implies the ballistic growth of local operators in
time, which can be quantified with the “butterfly” velocity vB. Similarly, the Lieb-Robinson velocity places
a state-independent ballistic upper bound on the size of time evolved operators in nonrelativistic lattice
models. Here, we argue that vB is a state-dependent effective Lieb-Robinson velocity. We study the
butterfly velocity in a wide variety of quantum field theories using holography and compare with free-
particle computations to understand the role of strong coupling. We find that vB remains constant or
decreases with decreasing temperature. We also comment on experimental prospects and on the
relationship between the butterfly velocity and signaling.
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In relativistic systems with exact Lorentz symmetry,
causality requires that spacelike-separated operators com-
mute. In nonrelativistic systems, there is no analogous
notion: a local operator Vð0Þ at the origin need not
commute with another local operator Wðx; tÞ at position
x at a later time t, even if the separation is much larger than
the elapsed time jxj ≫ t. This can be understood by
considering the Baker-Campbell-Hausdorff formula for
the expansion of Wðx; tÞ ¼ eiHtWðxÞe−iHt,

Wðx; tÞ ¼
X∞
k¼0

ðitÞk
k!

½H;…½H|fflfflfflfflffl{zfflfflfflfflffl}
k

;WðxÞ�…�; ð1Þ

where H is the Hamiltonian which is assumed to consist of
bounded local terms. As long as there is some sequence of
terms in H that connect the origin and point x (and absent
any special cancellations), the operatorWðx; tÞ will generi-
cally fail to commute with Vð0Þ.
This does not necessarily imply that the magnitude

commutator ½Wðx; tÞ; Vð0Þ� between distance operators
must be large. A bound of Lieb and Robinson [1], along
with many subsequent improvements [2–4], limits the size
of commutators of local operators separated in space and
time, even in nonrelativistic systems. In terms of the
Heisenberg operator Wðx; tÞ at position x and time t and
an operatorV at the origin of space and time, the bound reads

∥½Wðx; tÞ; Vð0Þ�∥ ≤ K0∥W∥∥V∥e−ðjxj−vLRtÞ=ξ0 ; ð2Þ
where K0 and ξ0 are constants, ∥ · ∥ indicates the operator
norm, and vLR is the Lieb-Robinson velocity. The growth of

the commutator is controlled by vLR, which is a function of
the parameters of the Hamiltonian. Hence, although oper-
ators separated by a distance x may cease to exactly
commute for any t > 0, the Lieb-Robinson bound implies
that their commutator cannot be Oð1Þ until t≳ x=vLR.
Thus, the Lieb-Robinson velocity provides a natural

notion of a “light” cone for nonrelativistic systems. Even
for relativistic systems, where causality implies that the
commutator of local operators must be exactly zero for
t < x (in this Letter we have set the speed of light to unity,
c ¼ 1), the Lieb-Robinson cone, if more restrictive, deter-
mines where in space-time acting with an early operator
Vð0Þ can nontrivially effect a later operator Wðx; tÞ.
Commutators ½Wðx; tÞ; Vð0Þ� of local Hermitian oper-

ators separated by time and space can also be used to
characterize the butterfly effect in many-body quantum
systems [5,6]. The butterfly effect can be defined in terms
of such a commutator, which expresses the dependence of
later measurements of distant operators Wðx; tÞ on an
earlier perturbation Vð0Þ. For strongly chaotic systems,
such a commutator can exhibit exponential growth in time,
in analogy to the classical butterfly effect. This connection
was recently made sharp within the AdS/CFT correspon-
dence, where quantum chaos in strongly coupled large-N
gauge theories was shown to be connected to universal
properties of high-energy scattering in the vicinity of the
horizons of black holes [7]. This has inspired a large body
of additional work [8–30].
To study the typical matrix elements of ½Wðx; tÞ; Vð0Þ�, it

is useful to consider the average of its square,
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Cðx; tÞ≡ −h½Wðx; tÞ; Vð0Þ�2iβ; ð3Þ

where h·iβ indicates thermal average at inverse temperature
β ¼ 1=T. Cðx; tÞ characterizes the strength of the butterfly
effect at x at time t after an earlier perturbation of Vð0Þ at
the origin. The statement of many-body chaos is that such
commutators should grow to be large for almost all choices
of operators W, V [11,12] and should remain large for a
long time thereafter. The time when the commutator grows
to be Oð1Þ (for suitably normalized operators) is known as
the “scrambling” time [7,31,32] and is usually denoted t�.
For large-N gauge theories with OðN2Þ degrees of freedom
per site, the early-time approach to scrambling is governed
by an exponential growth with time,

Cðx; tÞ ¼ K
N2

eλLðt−x=vBÞ þOðN−4Þ; ð4Þ

for some constants K, λL, and vB that can depend on the
choice of operators in the commutatorW, V. (It can be that
K ¼ 0, in which case the early-time growth is governed by
the OðN−4Þ term.) The onset of chaos is characterized by
the two quantities: λL and vB.
λL has been called a “Lyapunov” exponent [11]—in

analogy with classical chaos—and characterizes the growth
of chaos in time. (In Ref. [19] it is argued that the classical
limit of λL does not always map onto the classical definition
of the Lyapunov exponent; hence, our use of “quotes.”)
Maldacena, Shenker, and Stanford [14] showed that this
exponent is bounded by the temperature λL ≤ 2π=β, with
conjectured saturation for systems with thermal states that
have a large-N holographic black holes description whose
near-horizon region is well described by Einstein gravity.
vB is a velocity—the “butterfly” velocity—and charac-

terizes the speed at which the small perturbation grows [7].
Considering the commutator Eq. (3) as quantifying the
effect of the perturbation Vð0Þ on Wðx; tÞ, one may
understand the butterfly effect as the growth of the operator
Vð0Þ under time evolution. The speed of the growth is
characterized by vB, and the commutator begins to increase
when t ≈ x=vB þ λ−1L logN2 [10]. This defines an effective
light cone for chaos, a butterfly cone, outside of which the
system is not affected by the perturbation.
In this Letter, we explore the relationship between the

Lieb-Robinson bound and the butterfly effect. A similarity
was first noticed in Ref. [10], where it was pointed out that
vLR can be used to bound the rate of growth of operators.
Here, we would more directly like to contrast vLR with vB.
We will argue that the butterfly velocity can play the role of
a low-energy Lieb-Robinson velocity.
To elaborate, the Lieb-Robinson bound holds for any local

lattice model of spins with bounded norm interactions. The
constants K0, ξ0, and vLR depend on the model, but the
general conclusion that there exists an effective light cone
does not. However, as a bound on the operator norm of the
commutator, it has some important limitations. It requires that

W and V have finite operator norm. Also, the constants
appearing in the bound are microscopic; from the point of
view of a low-energy description of the physics in terms of an
emergent quantum field theory, they are UV sensitive. The
reason for these limitations is that theLieb-Robinsonbound is
state independent. One could hope that given further infor-
mation about the state of the system a tighter bound might
hold. Such a bound would constitute a bound on matrix
elements of the commutator between states of interest—e.g.,
the butterfly commutator Eq. (3)—instead of a bound on the
operator norm.
To that end, we compute the rate of growth of commu-

tators of generic local operators Eq. (3) for a wide variety of
holographic states of matter. We show that butterfly com-
mutators Eq. (3) grow ballistically with a butterfly velocity
vB, which is UV insensitive and only depends on IR
quantities such as temperature and certain thermodynamic
exponents. We use these results to argue that the butterfly
velocity is a state-dependent effective Lieb-Robinson veloc-
ity, which can be used to bound the growth of commutators.
For comparison, we provide a direct calculation of these
butterfly commutators in a free-fermion system. To further
support our argument, we show that, if we are allowed only
low-energy operators, the butterfly velocity places an upper
bound on the speed with which signals can be sent between
distant parties. Finally, we briefly discuss the prospect that
our results can be probed experimentally using a recently
proposed framework for measuring the scrambling time and
the butterfly velocity [25].
In the Supplemental Material [33] we provide additional

technical details: our holographic calculations, our free
fermion calculations, and the specifics of our signaling
argument.
Chaos in holographic models has so far been studied

mostly in the special case of conformal field theories. Here,
we will compute the rate of growth of commutators of local
operators for a much wider class of holographic theories,
specifically, those with a finite density of charge for some
conserved Uð1Þ symmetry.
The holographic backgrounds we study are solutions of

the Einstein-Maxwell-dilaton theory and describe the
dynamics of a metric coupled to a gauge field and an
uncharged scalar. With an electric flux for the gauge field
turned on, such holographic models are dual to quantum
field theories at finite density, that is, field theories with a
conserved Uð1Þ charge perturbed by a chemical potential.
(Strictly speaking, only some subset of these models have
known string theory embeddings; see, e.g., Ref. [43]. The
remaining models appear to be consistent gravitational
theories at low energies, but their UV status is not clear.)
These models were originally studied in an attempt to
describe non-Fermi-liquid states of electrons within the so-
called AdS/condensed matter theory program [43–46].
The models are characterized by the bulk action of the

Einstein-Maxwell-dilaton theory; the important information
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therein is the potential energy of the dilaton and the coupling
of the dilaton to the field strength of the gauge field. In terms
of observable parameters, the backgrounds are characterized
by two “critical exponents,” z and θ. The dynamical
exponent z relates momentum to energy via ω ∼ kz.
Correlations obey power laws at zero temperature, but at
finite temperature the field theory develops a correlation
length given by ξ ∼ T−1=z. The exponent θ enters via the
thermal entropy density,

sðTÞ ∼ Tðd−θÞ=z ∼
�

1

ξðTÞ
�

d−θ
; ð5Þ

where d is the spatial dimension of the field theory. The
physics is this: at a conventional quantum critical point the
entropy would scale as the inverse thermal length ξ−1 to the
power d, but when θ > 0, the entropy density scales like ξ−1

to the power d − θ. “Hyperscaling” is violated, so θ is called
the hyperscaling violation exponent. For additional details
about these geometries, see the Supplemental Material [33].
The simplest example of such a hyperscaling violating

theory is a Fermi gas at finite density. This system has
z ¼ 1 and θ ¼ d − 1. Since the fermions fill up their single
particle energy levels up to a Fermi energy equal to the
chemical potential, the locus of zero energy states in
momentum space is generically d − 1 dimensional instead
of zero dimensional. The extent to which the holographic
backgrounds we consider can describe conventional elec-
tronic states remains a topic of research. (For instance, note
that imposing the null energy condition forbids z ¼ 1 and
θ ¼ d − 1 in holographic models.) However, since the
results we find in the holographic model depend only on
z and θ in a rather simple way, we conjecture that they are
more broadly applicable, as we elaborate on below.
To calculate the growth of the commutator Cðx; tÞ, we

will study black holes geometries perturbed by a localized
operator Wðx; tÞ [7,10]. For large t such that GNe2πt=β ∼ 1
(where GN is Newton’s constant), backreaction will
become important, and the perturbation will create a shock
wave with a profile hðx; tÞ. Considering Cðx; tÞ in the t ¼ 0
frame, the difference between the state created by
Wðx; tÞVð0Þ and the state created by Vð0ÞWðx; tÞ is a null
shift of the Vð0Þ quanta by hðx; tÞ due to the shock
wave [8,10] (see also Refs. [47,48]). Taking into account
that the commutator is determined by the real part of
hWðx; tÞVð0ÞWðx; tÞVð0Þiβ [10], Cðx; tÞ behaves at early
times such that β < t < x=vB þ t� as

Cðx; tÞ ∼ hðx; tÞ2 þ � � � ; ð6Þ
where the scrambling time is given by t� ¼ ðβ=2πÞ×
logðld=GNÞ. We emphasize that this calculation is a
statement about commutators of generic operators. This
is due to the universal coupling of energy to gravity: any
operator that adds energy can backreact and generate a
shock wave (and operators that do not add energy must
commute with H and do not scramble).

In the Supplemental Material [33], we present the
technical details of our calculation of hðx; tÞ using the
shock wave techniques of Refs. [7,10]. From this, we
extract the butterfly velocity for hyperscaling violating
geometries,

vB ¼
�
β0
β

�
1−1=z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ z − θ

2ðd − θÞ

s
; ð7Þ

with 1=β0 a cutoff temperature above which the holo-
graphic solution breaks down. This is the main result of our
Letter. As promised, the butterfly velocity is a function of
IR quantities: thermodynamic exponents z, θ and the
inverse temperature β. The only dependence on high-
energy physics is the scale β0, which simply sets the
units of the temperature [49]; the β0 dependence can be
canceled by taking an appropriate ratio, so the prefactor is
meaningful even when z ≠ 1. Various comments are
in order.
First, we note that in the limit of AdS z ¼ 1, θ ¼ 0, we

recover the previously reported velocity for Einstein gravity
[7,10]:

vBðz ¼ 1; θ ¼ 0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
dþ 1

2d

r
: ð8Þ

On the other hand, for the z and θ appropriate to a Fermi gas
at finite density, our result predicts

vBðz ¼ 1; θ ¼ d − 1Þ ¼ 1; ð9Þ
as appropriate for a theory that lives in effectively 1þ 1
dimensions.
Second, we note that for z < 1 the butterfly velocity

diverges at T ¼ 0, but microscopic causality requires
bounded vB. Thus, if the hyperscaling violation geometry
is to describe the deep IR, we require z ≥ 1. This means
that vB has a temperature dependence of

vB ∼ T1−1=z; 1 − 1=z > 0; ð10Þ
and increases with temperature. vB behaves as an effec-
tively “renormalized” Lieb-Robinson velocity, with a
magnitude that depends on a negative power of the thermal
scale β.
Third, the allowed values of z and θ are constrained by

the null energy conditions. For example, when z ¼ 1 the
null energy condition implies that θ < 0 or θ > d.
Furthermore, if z ≥ 1, then d − θ þ z ≥ 0. In fact, the
stronger condition d − θ þ z > 1 follows from finiteness
of energy fluctuations in the ground state [50].
Finally, our computation also shows that for hyper-

scaling violating theories

λL ¼ 2π

β
; ð11Þ
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which, unlike vB, is unchanged from its value in Einstein
gravity [7]. We also point out that λL behaves like a state-
dependent effective Lieb-Robinson growth rate [equivalent
to vLR=ξ0 in Eq. (2)], a quantity for which a stronger bound
was successfully derived [14].
The main result of this Letter is a computation of the

butterfly velocity in a class of strongly coupled quantum
field theories dual, via AdS/CFT, to Einstein-Maxwell-
Dilaton theories of gravity. In fact, the computation relied
only on the form of the metric, so any set of matter fields
coupled to Einstein gravity which produces such a solution
is sufficient. We framed the calculation in terms of the
possibility of a bound on the growth of commutators
analogous to the Lieb-Robinson bound in lattice many-
body systems, so we now briefly discuss the thesis that the
butterfly velocity functions as a low-energy Lieb-Robinson
velocity.
To begin, it is interesting to compare the strongly

coupled holographic results to results in the opposite limit
of zero coupling. In the Supplemental Material [33], we
record calculations of commutators for free-particle lattice
models. In these free-particle models Wick’s theorem
implies that all commutators of composite operators are
controlled by the basic commutator (or anticommutator)
between the elementary bosons (or fermions). For example,
a one-dimensional free-fermion hopping model with hop-
ping matrix element w is known to flow to a free CFTat low
energies, and the anticommutator of two fermions at integer
positions x and y is

fcðx; tÞ; c†ðy; 0Þg ¼ e−iπðx−yÞ=2Jx−yð2wtÞ; ð12Þ

where JνðxÞ is a Bessel function of index ν. This anti-
commutator grows outward like a shell,

fcðx; tÞ; c†ðy; 0Þg ∼ tjx−yj

jx − yj! ðearly timesÞ; ð13Þ

∼ t−1=2 ðlate timesÞ; ð14Þ

showing an initial rise followed by a slow decay to zero.
This is to be contrasted to a strongly coupled system, where
commutators should grow like a ball [10].
The anticommutator Eq. (12) is state independent and

sensitive to the UV details of the lattice model. (While
naively this violates the bound of Ref. [14], we note that the
assumptions of the proof fail to hold: the relevant time-
ordered four point functions fail to factorize after a
“dissipation time.”) However, by considering fermion
operators corresponding to low-energy wave packets, it
is possible to exhibit an anticommutator that grows instead
at some group velocity given by the momentum derivative
of the energy evaluated at the average momentum of the
wave packet. If the dispersion relation near zero energy is
ϵ ∼ kz with k the momentum, then in a thermal state where

the typical energy is T, the typical thermal group velocity
will be T1−1=z, as in the holographic results. With the
additional reasonable assumption that weak interactions
cause high-energy particles to decay towards low energy, it
is plausible that our holographic result applies at both weak
and strong coupling, at least in terms of its temperature
dependence. Note also that this result is not a trivial
consequence of dimensional analysis when θ ≠ 0, since
there are additional scales in the problem.
In addition to these statements about commutators, there

is an alternative interpretation of vB in terms of quantum
information flow. As we show in the Supplemental Material
[33], within a certain model of communication using only
low-energy observables, if the relevant commutators
between operators controlled by two distant parties are
small, then these parties cannot communicate much infor-
mation. The butterfly velocity thus defines an information
theoretic light cone inwhich quantum information cannot be
spread in space faster than vB. Relatedly, in Ref. [18] it was
argued thatvB controls the flowof information through time,
and inRef. [51] it will be shown that the butterfly velocity vB
controls the rate of growth of the entanglement wedge in
holographic theories. Thus, vB is both a measure of the
growth of operators or commutators and also a measure of
the spreading of information under time evolution. These
results all support our identification of the butterfly velocity
as a low-energy Lieb-Robinson velocity.
It is also interesting to compare vB with the speed of

hydrodynamic sound. Conformal field theories support a
hydrodynamic sound mode with velocity vs ¼ ð1= ffiffiffi

d
p Þ.

Consistent with vB being an upper bound on operator
growth, we find vBðz ¼ 1; θ ¼ 0Þ ≥ vs for a CFT. In
the case where the shock wave calculation completely
determines the butterfly velocity, our results provide an
interesting constraint on the speed of the sound: if a
hydrodynamic sound mode exists, its velocity must go
to zero with temperature at least as fast as vB [52,53]. The
constraint can be avoided by adding extra ingredients into
the bulk, e.g., probe D-branes [54]. Presumably a proper
calculation of the butterfly velocity in the presence of the
D-brane would be sensitive to any sound mode on the
D-brane world volume.
To summarize, we have seen that the butterfly velocity

vB characterizes the spread of quantum information in
quantummany-body systems and can provide a low-energy
analog of the microscopic Lieb-Robinson velocity vLR. We
have also computed the dependence of the butterfly
velocity on temperature and on the thermodynamic expo-
nents z and θ at weak and strong coupling. Given the
interest in experimental measures of the spread of quantum
information [55–58], it is natural to ask if our results can be
tested experimentally.
Recently, an experimental protocol was devised to

measure out-of-time-order correlation functions [25].
Such correlators are simply related to the squared
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commutator Cðx; tÞ, and therefore these measurements are
necessary to gain access to the butterfly velocity.
Furthermore, although the simpler measurement of an
average commutator h½Wðx; tÞ; Vð0Þ�i would give informa-
tion about the butterfly velocity (at least a lower bound), a
measurement of Cðx; tÞ is more desirable because it gives
information about typical off-diagonal matrix elements.
Cold bosonic atoms moving in an optical lattice con-

stitute one experimental setting where such measurements
could be performed. Because the sign of the Hamiltonian
can be effectively reversed by combining lattice modulation
with Feshbach resonance, the echolike measurement nec-
essary to measure Cðx; tÞ is conceivable.
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Note added.—Recently, Blake [28] also computed the
butterfly velocity in hyperscaling violating geometries.
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