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We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that
these theories have a universal regime in which the diffusion constant is given byDc ¼ Cv2B=ð2πTÞ, where
vB is the velocity of the butterfly effect. The constant of proportionality C depends only on the scaling
exponents of the infrared theory. Our results suggest an unexpected connection between transport at strong
coupling and quantum chaos.
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Introduction.—The transport properties of strongly cor-
related materials display a remarkable degree of univer-
sality. In particular, many materials with fundamentally
different microscopic physics exhibit a linear resistivity
over a broad temperature regime. A long-standing idea to
explain such universality has been that transport is gov-
erned by a fundamental dissipative time scale, τ ∼ ℏ=ðkBTÞ
[1–3]. Recently, theoretical attention has been refocused on
this claim following the direct observation of this
“Planckian” time scale in a wide range of materials [4,5].
Perhaps the most famous example of how τ could lead to

universal behavior is found in the proposed viscosity bound
of Kovtun, Son, and Starinets [6]. Assuming that the
viscosity η of a relativistic theory is controlled by this
time scale leads to a conjecture that η=s should be given by

η

s
∼

1

4π

ℏ
kB

; ð1Þ

where s is the entropy density. The original evidence for
this claim stemmed from the observation that such a value
is generic to many holographic theories with a gravity dual
[7–9]. However, more recent developments in holography
have shown that this relationship can receive large correc-
tions, for instance, in anisotropic systems or those without
translational symmetry [10–16].
Nevertheless, the idea that τ underpins the transport

coefficients of strongly coupled matter has survived.
Indeed, noticing that the viscosity controls momentum
diffusion, it was proposed in Ref. [5] that one can
reformulate the Kovtun, Son and Starinets bound in terms
of the diffusion constants

D ∼
ℏv2

kBT
; ð2Þ

where v is a characteristic velocity of the theory.
A simple place in which to test Eq. (2) is in the context of

a particle-hole symmetric theory. In this case the electrical
current decouples from momentum and one has a finite
conductivity even in a translationally invariant theory.
In particular, for a holographic Conformal Field Theory

with an Einstein gravity dual then the charge diffusion
constant indeed takes a universal form [17]

Dc ¼
ℏc2

4πkBT
dþ 1

d − 1
; ð3Þ

where d is the number of spatial dimensions and the
characteristic velocity of a relativistic theory is the speed
of light, v ¼ c. Outside the framework of a relativistic
theory, however, it has proved challenging to identify a
velocity to appear in Eq. (2).
The purpose of this Letter is to point out that a natural

candidate for such a velocity in a strongly coupled theory is
provided by the butterfly effect [18–23]. In particular, the
chaotic properties of strongly interacting large N gauge
theories have recently been intensely studied using the
holographic correspondence [18–27]. In such theories
the butterfly effect refers to the exponential growth in
the commutators of generic Hermitian operators which
occurs after the thermal time scale β [19–21],

h½ŴxðtwÞ; V̂yð0Þ�2iβ ∼ f1eλLðtw−t�−jx−yj=vBÞ þ…; ð4Þ

where t� is the scrambling time, λL is the Lyapunov
exponent, and vB is known as the butterfly velocity.
For any holographic theory with a classical gravity dual,

both the Lyapunov exponent λL and the butterfly velocity
vB can be extracted from properties of a black hole horizon
[19–21]. Similarly, it has long been established that the dc
transport coefficients of conserved quantities can also be
related to the horizon via the membrane paradigm [9]. As
such, the holographic correspondence hints at an intimate
connection between transport and the butterfly effect.
Moreover, the butterfly velocity vB provides a natural

analogue of the speed light in Eq. (3), which can be defined
even in nonrelativistic theories. Specifically, the commu-
tator in Eq. (4) determines how a perturbation to the system
by V̂y propagates to affect a later, distant measurement by
Ŵx. The butterfly velocity therefore describes the finite
speed at which information spreads and, hence, has been
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argued in Ref. [27] to act as a state-dependent Lieb-
Robinson velocity [28]. These general considerations there-
fore motivate us to propose vB as the characteristic velocity
through which to formulate the diffusion bound of Hartnoll
[5]. That is, the diffusion constants should be bounded by

D ∼
ℏv2B
kBT

; ð5Þ

where the saturation of such a bound would correspond to a
Planckian dissipation time τ ∼ ℏ=kBT.
In the remainder of this Letter we wish to provide initial

evidence in support of Eq. (5) by studying the charge
diffusion constant of simple holographic scaling geometries.
In particular, we will consider theories whose infrared
physics is described by a dynamical critical exponent z, a
hyperscaling violation exponent θ, and an anomalous
dimension Φ for the charge density. Since previous studies
of the butterfly effect in holography have focused on
conformal field theories [19–21]; our first task is to calculate
the velocity vB for these more general geometries.
Armed with this velocity, we can then proceed to

compare with the diffusion constant. Our central result is
that in these theories there is a universal regime in whichDc
indeed satisfies a relationship of the form (5)

Dc ¼
dθ
Δχ

v2B
2πT

; ð6Þ

where dθ is the effective spatial dimensionality of the fixed
point, Δχ is the scaling dimension of the susceptibility, and
we have reverted to high energy units ℏ ¼ kB ¼ 1. Finally,
we close this Letter with a brief discussion of the
implications of Eq. (6) for our general proposal and the
extension to other diffusion constants.
Butterfly effect in scaling geometries.—Like in classical

physics, the butterfly effect in a quantum system is
associated with whether the effects of a small perturbation
can eventually become large at late times. In holographic
theories, the butterfly effect corresponds to the fact that the
energy of an in-falling particle near a black hole horizon is
exponentially boosted at late times [19]. The backreaction
of this particle on the geometry creates a shock wave along
the horizon that causes the growth of commutators Eq. (4).
From the form of this shock-wave geometry, it is

possible to read off both the Lyapunov exponent and the
velocity vB. For the most part, previous holographic studies
of chaos have focused on conformal field theories in
which the velocity vB is just a constant [19–21]. We will
therefore begin by adapting the shock-wave techniques of
Refs. [19–21] to calculate vB for a more general family of
metrics. These are described by an infrared geometry,

ds2dþ2 ¼ −UðrÞdt2 þ dr2

UðrÞ þ VðrÞd ~xd2; ð7Þ

where r is the additional radial coordinate of the gravita-
tional theory. At zero temperature we will assume we have
power law solutions,

UðrÞ ¼ L−2
t ru1 ; VðrÞ ¼ L−2

x r2v1 ; ð8Þ
where we take u1 > 1, v1 > 0 so that r → 0 corresponds to
the infrared of our theory. To turn on a finite temperature,
we can introduce a horizon at r ¼ r0:

UðrÞ ¼ L−2
t ru1

�
1 −

rδ0
rδ

�
; VðrÞ ¼ L−2

x r2v1 ; ð9Þ

with δ ¼ dv1 þ u1 − 1. The temperature of the boundary
quantum field theory is then related to the horizon radius r0
by the usual formula 4πT ¼ U0ðr0Þ.
Although written in unusual coordinates, these metrics

simply correspond to a family of hyperscaling violating
geometries [29–35] where the critical exponents z, θ are
related to the power laws in the metric via

u1 ¼
2z − 2θ=d
z − 2θ=d

; 2v1 ¼
2 − 2θ=d
z − 2θ=d

: ð10Þ

As usual, the dynamical critical exponent z characterizes
the different scaling of space and time at the fixed point
½x� ¼ −1, ½T� ¼ −½t� ¼ z. The hyperscaling violation expo-
nent θ corresponds to the fact that the metric transforms
nontrivially under scaling and is responsible for an effective
shift in the dimensionality of the free energy, ½f� ¼
zþ d − θ ¼ zþ dθ.
Additionally, we have retained various parameters in our

solution, Lt, Lx, that might normally be set to unity. These
parameters, which set various scales in our infrared theory,
are nonuniversal and will depend on the embedding of our
metric into an asymptotically anti–de Sitter (AdS) space-
time. We will retain them in order to emphasize that the
relationship between the diffusion constant and the butter-
fly effect [Eq. (6)] is independent of this UV data.
Shock-wave geometries.—We now wish to calculate the

velocity of the butterfly effect dual to the metrics Eq. (9) by
constructing the relevant shock-wave geometries [19,20].
In order to do this, we first need to pass to Kruskal
coordinates ðu; vÞ. We therefore define

uv ¼ −eU0ðr0Þr�ðrÞ; u=v ¼ −e−U0ðr0Þt; ð11Þ

where the tortoise coordinate is given as usual by
dr� ¼ dr=UðrÞ. In terms of these coordinates our black
hole metric now reads

ds2 ¼ AðuvÞdudvþ VðuvÞd ~xd2;

AðuvÞ ¼ 4

uv
UðrÞ

U0ðr0Þ2
; VðuvÞ ¼ VðrÞ; ð12Þ

with horizons now located at u ¼ 0 and v ¼ 0.
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To study the butterfly effect, we consider releasing a
particle from x ¼ 0 on the boundary of AdS at a time tw in
the past. Then for late times (i.e., tw > β) the energy density
of this particle in Kruskal coordinates is exponentially
boosted and localized on the u ¼ 0 horizon,

δTuu ∼ Eeð2π=βÞtwδðuÞδð~xÞ; ð13Þ
where E is the initial asymptotic energy of the particle. As a
result, even the effects of an initially small perturbation
cannot be neglected and after the scrambling time
t� ∼ β logN2 the backreaction of the stress tensor
Eq. (13) on the metric becomes significant.
Within generic theories of Einstein gravity coupled to

matter, the resulting geometry takes a universal form—it is
a shock wave that is localized on the horizon [19–21,
36–38]. In particular, such a solution corresponds to a shift
in the v coordinate v → vþ hðxÞ as one crosses the u ¼ 0
horizon. The resulting metric can then be written as

ds2 ¼ AðuvÞdudvþ VðuvÞd~x2 − AðuvÞδðuÞhðxÞdu2;
ð14Þ

where one finds a solution to the Einstein equations
provided the shift obeys [38]

ð∂i∂i −m2ÞhðxÞ ∼ 16πGNVð0Þ
Að0Þ Eeð2π=βÞtwδð~xÞ ð15Þ

and the screening length m is given by

m2 ¼ d
Að0Þ

∂VðuvÞ
∂ðuvÞ

����
u¼0

: ð16Þ

Remarkably, after using the background equations of
motion, one finds that the equations (15) and (16) for
the shift still hold even when there is a nontrivial stress
tensor supporting the background geometry [27,38]. The
only way the matter content of the theory effects the shock
wave is indirectly through the determination of the metric
functions AðuvÞ and VðuvÞ.
The net result is that all we need to do to study the

butterfly effect is therefore to solve Eq. (15). At long
distances x ≫ m−1 the metric is simply given by

hðxÞ ∼ Eeð2π=βÞðtw−t�Þ−mjxj

jxjðd−1Þ=2 : ð17Þ

Since it is the formation of this shock-wave geometry that is
responsible for the growth of commutators [19,20], one can
immediately read off the Lyapunov exponent λL and
velocity vB of these holographic theories as

λL ¼ 2π

β
; vB ¼ 2π

βm
: ð18Þ

While the Lyapunov exponent is universal in all these
theories, and saturates the proposed bound on chaos [23],

the velocity is model dependent. In order to extract vB for
our metrics [Eq. (9)], we observe that we can rewrite the
screening length Eq. (16) in terms of more familiar
coordinates ðr; tÞ as

m2 ¼ dπTV 0ðr0Þ; ð19Þ
where the prime ð 0Þ indicates a radial derivative. The
butterfly velocity therefore takes a remarkably simple form:

v2B ¼ 4πT
dV 0ðr0Þ

: ð20Þ

For the case of the AdS-Schwarzchild solution, dual to a
CFT, we have V 0ðr0Þ ∼ r0 ∼ T, giving a constant velocity as
expected. In our more general scaling geometries, however,
this velocity has a nontrivial temperature dependence:

v2B ∼ T2−2=z: ð21Þ

Charge diffusion.—Now that we have the butterfly
velocity vB, we can proceed to study the diffusion of a
Uð1Þ charge in the background Eq. (9). We therefore
consider coupling a gauge field Aμ to our theories using
an action

S ¼
Z

ddþ2x
ffiffiffiffiffiffi
−g

p �
−
1

4
ZðrÞFμνFμν

�
; ð22Þ

where ZðrÞ is a position-dependent Maxwell coupling. In
the context of our scaling geometries, this position depend-
ence can arise from a coupling between the gauge field and
a logarithmically running dilaton that supports our back-
ground geometry Eq. (9). We will therefore assume that it
takes a power law form ZðrÞ ¼ Z0rγ .
In terms of the boundary field theory, this running of the

Maxwell coupling corresponds to the possibility that the
Uð1Þ charge density can have an anomalous dimension in the
IR [39–42]. That is, the chemical potential μ and charge
density ρ dual to the gauge field Aμ have scaling dimensions

½μ� ¼ z − Φ; ½ρ� ¼ d − θ þ Φ; ð23Þ

where the anomalous dimensionΦ is related to the runningof
the Maxwell coupling by

γ ¼ 2Φ − 2θ=d
z − 2θ=d

: ð24Þ

Extracting the diffusion constant for a current with
particle-hole symmetry is then a standard calculation in
holography. The Einstein relation Dc ¼ σ=χ relates the
diffusion constant to the conductivity σ and the suscep-
tibility χ ¼ ð∂ρ=∂μÞT. Both of these quantities can then be
calculated using the membrane paradigm [9]. The electrical
conductivity takes a particularly simple form—it is just
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related to the effective Maxwell coupling on the
horizon:

σ ¼ Vd=2−1ZðrÞjr0 : ð25Þ

Obtaining the susceptibility is only slightly more com-
plicated. If we consider turning on a small chemical
potential μ, the Maxwell equation implies that the electric
flux is a constant

−
ffiffiffiffiffiffi
−g

p
ZðrÞgrrgtt∂rAt ¼ ρ; ð26Þ

where ρ is interpreted as the charge density of the boundary
theory. Since the metric functions are independent of μ at
leading order, we can read off the susceptibility

χ−1 ¼ ∂μ
∂ρ

����
ρ¼0

¼
Z

r0

∞
dr

1ffiffiffiffiffiffi−gp
ZðrÞgrrgtt ð27Þ

and, hence, arrive at the diffusion constant

Dc ¼ ½Vd=2−1ZðrÞ�r0
Z

r0

∞
dr

1ffiffiffiffiffiffi−gp
ZðrÞgrrgtt : ð28Þ

At this point it is important to emphasize that, in general,
the susceptibility, and hence the diffusion constant,
depends via Eq. (27) on the details of the full bulk
geometry. Since the butterfly velocity depends only on
the local properties of the horizon, these effects will not
always be related in a simple manner.
In particular, the behavior of the susceptibility will

depend on whichever region of the geometry dominates
the integral in Eq. (27). For our scaling geometries Eq. (9),
this results in two qualitatively different regimes, depend-
ing on the scaling dimension,

Δχ ¼ ½ρ� − ½μ� ¼ dθ þ 2Φ − z; ð29Þ

of the susceptibility.
Nonuniversal regime.—When the scaling dimension is

negative, Δχ=z < 0, then it is the UV region of the
geometry that controls the susceptibility. Since in this case
the diffusion constant is sensitive to the full geometry, we
should not expect to find universal behavior in general. In
particular, after performing the integral Eq. (27), we find
that at low temperatures the susceptibility takes a constant

value set by the cutoff χ ∼ Λ
Δχ=z
UV . The resulting diffusion

constant therefore scales as

Dc ∼
�
ΛUV

T

�
−Δχ=z

T1−2=z; ð30Þ

and, hence, in this regime it is parametrically larger than
v2B=T [Eq. (20)] by powers of the cutoff.

Universal regime.—In contrast, when the scaling dimen-
sion Δχ=z > 0, it is the infrared region of the geometry that
dominates the integral and gives a susceptibility χ ∼ TΔχ=z.
As a result, the charge fluctuations are now controlled by
the near-horizon geometry, and so we are able to relate Dc
to the butterfly effect. Indeed, if we explicitly evaluate our
expression Eq. (28), we arrive at a formula for the diffusion
constant:

Dc ¼
z − 2θ=d

Δχ
L2
xr

1−2v1
0 ; ð31Þ

where the explicit dependence on the dilaton profile has
canceled between the conductivity and susceptibility. If we
now note that our formula (20) for the butterfly velocity is
equivalent to

v2B
2πT

¼ z − 2θ=d
dθ

L2
xr

1−2v1
0 ; ð32Þ

we see that the diffusion constant always takes the form

Dc ¼
dθ
Δχ

v2B
2πT

; ð33Þ

which is the central result we presented in the introduction
Eq. (6).
It is worth emphasising that both the diffusion constantDc

and the butterfly velocity vB depend, through Lx and r0, on
the details of our holographic theory. In particular, they are
sensitive to how our metric Eq. (9) is embedded into an
asymptotically AdS space-time. The relationship between
them, on the other hand, is completely universal—it depends
only on the scaling exponents of the infrared fixed point.
Discussion.—In summary, we have proposed that a

natural way to define the diffusion bound of Hartnoll [5]
in a strongly coupled system is to use the velocity vB of the
butterfly effect. Our main piece of evidence in support of
this proposal was a calculation of the charge diffusion
constant of simple holographic scaling geometries. We
found that these theories had a universal regime in which
the diffusion constant could be tied to properties of the
black hole horizon. Since the butterfly velocity is also
determined by the horizon, we were able to establish our
central result [Eq. (33)]. The net result is that we have
provided an intuitive picture of charge diffusion in these
models. That is, in this regime we can think of charge
transport as being governed by a diffusive process with a
velocity vB and a Planckian time scale τ ∼ 1=T.
More generally, we saw that the diffusion constant will

not take a universal value but rather depends on the details
of the full geometry. Since these effects increased the
diffusion constant, this is consistent with the proposal that
Eq. (5) corresponds to a “lowest possible value” for Dc.
However, it is worth noting that it does not seem possible
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to formulate a strict bound, at least in terms of vB, since the
coefficients in Eq. (33) depend on the universality class.
Nevertheless, in generic theories these are order 1 numbers,
and so the essential point is that as T → 0, the diffusion
constant will be at least as big as v2B=T.
While our focus in this Letter has been on studying charge

diffusion in hyperscaling violating geometries, it is clearly of
interest to understand to what extent our proposal Eq. (5)
holdsmore generally. One obvious direction to pursuewould
be to investigate howhigher derivative corrections to the bulk
action affect our result [Eq. (33)].Additionally, it is important
to extend our analysis to include other diffusion constants.
In theSupplementalMaterial [43]we, therefore, calculate the
momentum diffusion constant (i.e., viscosity) of these holo-
graphic scaling geometries and demonstrate that it is also
consistent with Eq. (5).
Finally, in Ref. [44] we will provide a further test of our

proposal by studying more general holographic models
with momentum relaxation [42,45–51]. This will also allow
us to study the energy diffusion constant, which diverges in
the translationally invariant theories considered here.
Remarkably, we find that when momentum relaxation is
strong, the diffusion constants do not become arbitrarily
small, but rather are universally given by Eq. (5). As such,
these models constitute strong further evidence that the
diffusion constants of holographic theories are indeed
bounded in terms of vB.
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Note added.—Recently, we became aware that Roberts and
Swingle have simultaneously computed the velocity of the
butterfly effect in hyperscaling violating geometries [27].
Their formula agrees with our Eq. (20).
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