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We define what it means for time translation symmetry to be spontaneously broken in a quantum system
and show with analytical arguments and numerical simulations that this occurs in a large class of many-
body-localized driven systems with discrete time-translation symmetry.
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Introduction.—Spontaneous symmetry-breaking (SSB)
is a pivotal concept in physics, with implications for
condensed matter and high-energy physics. It occurs when
the ground state or low-temperature states of a system fail
to be invariant under symmetries of the Hamiltonian. The
Ising model is a prototypical example for this behavior:
Here, the symmetry is a simultaneous flip of all the spins,
which leaves the energy of a state unchanged. In the
ferromagnetic phase, low-energy states are formed with a
nonzero magnetization. For almost every symmetry imagi-
nable, there is a model whose ground state breaks it:
crystals break the continuous translational and rotational
symmetries of Coulomb interactions; magnetically ordered
materials break time-reversal symmetry and spin symmetry,
and superfluids break global gauge symmetry. The lone
holdout, thus far, has been time-translation symmetry. In
this Letter, we give a definition of time-translation sym-
metry breaking and construct an example of this behavior
in a driven many-body localized system.
Definition of time translation symmetry-breaking.—

Systems that spontaneously break time-translation sym-
metry (TTS) have been dubbed “time crystals,” in analogy
with ordinary crystals, which break spatial translational
symmetries [1,2]. Even defining this notion correctly
requires considerable care, and putative models have
proven inconsistent [3–9]. The most obvious definition
of time-translation symmetry breaking (TTSB) would be
that the expectation values of observables are time-depen-
dent in thermal equilibrium. However, this is clearly
impossible, since a thermal equilibrium state ρ ¼
ð1=ZÞe−βH is time independent by construction (because
½ρ; H� ¼ 0). A more sophisticated definition of TTSB in
terms of correlation functions in the state ρ has been
proposed—and ruled out by a no-go theorem—in Ref. [10].
Therefore, we must look beyond strict thermal equilib-

rium. This should not be too surprising, as the state ρ
preserves all the symmetries of H, which would suggest
that no symmetry can be spontaneously broken. For
symmetries other than time translation, the resolution to
this paradox is well known: in a system with a sponta-
neously broken symmetry, there is ergodicity breaking, and

the lifetime of a symmetry-breaking state diverges as the
system size grows. Thus, in the thermodynamic limit, the
state ρ is unphysical and is never reached. This suggests
that an analogous phenomenon should be possible for time
translation symmetry, where the time taken to reach a time-
independent steady state (such as the thermal state ρ)
diverges exponentially with system size.
To turn these considerations into a more useful defi-

nition, we observe that, in a quantum system, the ergodicity
breaking in a phase with a spontaneously broken symmetry
can be seen at the level of eigenstates. For example, the
symmetry-respecting ground states of an Ising ferromagnet
are j�i ¼ ð1= ffiffiffi

2
p Þðj↑ � � �↑i � j↓ � � �↓i. Such long-range

correlated “cat states” are unphysical, will immediately
decohere given any coupling to the environment, and can
never be reached in finite time by any unitary time
evolution starting from a short-range correlated starting
state. On the other hand, the “physical” combinations
j↑ � � �↑i and j↓ � � �↓i break the Ising symmetry.
In the TTSB case, we also need to invoke the intuition that

oscillation under time evolution requires the superposition
of states whose phases wind at different rates. That is,
whereas in the Ising ferromagnet, the two cat states j�i are
degenerate in the thermodynamic limit, in a time crystal they
would need to have different eigenvalues under the time-
evolution operator. Indeed, consider, for simplicity, a dis-
crete time evolution operator Uf (which describes periodi-
cally driven “Floquet” systems as we discuss further below.)
Suppose that the states j�i have eigenvalues eiω� underUf.
Then, although the unphysical cat states j�i are time
invariant (up to a phase), a physical state such as j↑ � � �↑i
will evolve according to ðUfÞnj↑i ∝ cosðωnÞj↑ � � �↑iþ
i sinðωnÞj↓ � � �↓i, where ω ¼ ðωþ − ω−Þ=2.
The above considerations motivate two equivalent

definitions of TTSB, using the following terminology
or notation. We will say that a state jψi has “short-
ranged correlations” if, for any local operator
ΦðxÞ, hψ jΦðxÞΦðx0Þjψi − hψ jΦðxÞjψihψ jΦðx0Þjψi → 0 as
jx − x0j → ∞, i.e., if cluster decomposition holds. Note that
the superpositions defined above are not short-range corre-
lated under this definition, while a state such as j↑↑…↑i is.
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We assume that time evolution is described by a time-
dependent HamiltonianHðtÞ, with a discrete time translation
symmetry such thatHðtÞ ¼ Hðtþ TÞ for some T. Note that
we have not assumed a continuous time translation sym-
metry, which will allow us to consider Floquet systems
driven at a frequency Ω ¼ 2π=T. Let Uðt1; t2Þ be the
corresponding time evolution operator from time t1 to t2.
We now define (in the thermodynamic limit)
TTSB-1: TTSB occurs if for each t1, and for every

state jψðt1Þi with short-ranged correlations, there exists
an operator Φ such that hψðt1 þ TÞjΦjψðt1 þ TÞi ≠
hψðt1ÞjΦjψðt1Þi, where jψðt1þTÞi¼Uðt1þT;t1Þjψðt1Þi.
TTSB-2: TTSB occurs if the eigenstates of the Floquet

operator Uf ≡UðT; 0Þ cannot be short-range correlated.
In what follows, we will show how to construct a time-

dependent Hamiltonian HðtÞ which satisfies the conditions
for TTSB given above. In such a system, even though the
time evolution is invariant under the discrete TTS generated
by time translation by T, the expectation value of some
observables is only invariant under translations by nT for
some n > 1. In other words, the system responds at a
fraction Ω=n of the original driving frequency.
The first definition puts the time dependence front and

center and is directly connected to how TTSB would be
observed experimentally: prepare a system in a short-range
correlated state and observe its subsequent time evolution,
which will not be invariant under the TTS of the time
evolution operator. But since, in a Floquet eigenstate,
observables would necessarily be invariant under the
discrete TTS generated by time translation by T, definition
TTSB-1 implies that Floquet eigenstates cannot be short-
range correlated, thereby implying TTSB-2. Conversely, if
it is impossible to find Floquet eigenstates that are short-
range correlated (which is TTSB-2), then it means that
short-range correlated states can only be formed by taking
superpositions of Floquet eigenstates with different eigen-
values. In such states, observables will not be invariant
under the discrete TTS generated by time translation by T,
thereby implying TTSB-1. Hence, the two definitions are
equivalent. The second definition will prove to be particu-
larly useful for analyzing the results of numerical exact
diagonalization of the Floquet operator. When discrete TTS
by T is broken down to TTS by nT, the eigenstates of Uf
must be superpositions of n different short-range-ordered
states. Then, in any Floquet eigenstate, the mutual infor-
mation IðA; BÞ≡ SA þ SB − SAB, where A and B are
spatially separated regions of the system and SX is the
von Neumann entropy of the reduced density matrix for
region X, satisfies IðA;BÞ → ln n as the system size as well
as the sizes of the regions A and B and their separation is
taken to infinity [11,12].
Floquet-many-body-localization.—Generic translation-

ally invariant many-body Floquet systems likely cannot have
TTSB, as their eigenstates resemble infinite temperature
states and, hence, are short-range correlated [13–15].

(Nevertheless, an initial state that is not an eigenstate could
potentially heat very slowly, leading to nontrivial intermedi-
ate-time dynamics [16–20].) This is analogous to the fact
(which follows from the results of Ref. [10]) that, for
continuous time-translation symmetry, TTSB is impossible
so long as the eigenstate thermalization hypothesis [21–24] is
satisfied.However,we canbuild upon recent developments in
the study of Floquet-many-body-localized (Floquet-MBL)
systems [25–35], for which the eigenstates do not resemble
infinite temperature states. Instead, the Floquet states of such
systems exhibit the characteristics of the energyeigenstates of
staticMBL [36–45] systems: the eigenstates are local product
states, up to finite-depth unitary quantum circuits [46].
In MBL systems, all eigenstates (of the Hamiltonian in

the static case or of the Floquet operator in the driven case)
behave as ground states and, therefore, SSB or topological
order can occur in all eigenstates [46–48]. In the SSB case,
simultaneous eigenstates of the Floquet operator and of the
Cartan subalgebra of the symmetry generators cannot be
short range correlated. TTSB-2 can then be viewed as a
special case of this in which there are no other symmetry
generators besides Uf.
In the next paragraph, we construct a Floquet operator

and show that it exhibits discrete TTSB. In subsequent
paragraphs, we show that this soluble Floquet operator sits
in a finite window in parameter space over which TTSB
occurs—i.e., that there is a TTSB phase. Models which
exhibit TTSB (though not identified as such) have pre-
viously been considered in Refs. [30,35]. These models
also break another symmetry spontaneously, but this is not
essential to achieve TTSB. Our model will be a generali-
zation of that of Refs. [30,35], with the extra symmetry
explicitly broken. By contrast, the models of Refs. [49,50]
rely crucially on an additional symmetry.
Model and soluble point.—We consider one-dimensional

spin-1=2 systems with Floquet unitaries of the form

Uf ¼ exp ð−it0HMBLÞ exp
�
it1

X
i

σxi

�
: ð1Þ

We choose t1 ≈ π=2, such that the application of
P

iσ
x
i in

this stroboscopic time evolution has the effect of approx-
imately flipping all of the spins since expðiðπ=2ÞPiσ

x
i Þ ¼Q

iiσ
x
i . This is followed by time evolution for an interval t0

under the Hamiltonian

HMBL ¼
X
i

ðJiσziσziþ1 þ hziσ
z
i þ hxi σ

x
i Þ; ð2Þ

where Ji, hzi , and hxi are uniformly chosen from
Ji ∈ ½ðJ=2Þ; ð3J=2Þ�, hzi ∈ ½0; hz�, hxi ∈ ½0; h� where
h ≪ J is the regime of interest. The period of the drive
is T ¼ t0 þ t1. For h ¼ 0 and t1 ¼ π=2, the eigenstates of
HMBL are eigenstates of the individual σzi . Call such an
eigenstate jfsigi with si ¼ �1 so that σzkjfsigi ¼ skjfsigi.
Then Hjfsigi ¼ ½EþðfsigÞ þ E−ðfsigÞ�jfsigi where
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EþðfsigÞ ¼
P

iðJisisiþ1Þ and E−ðfsigÞ ¼
P

iðhzi siÞ. The
Floquet eigenstates are eit0E

−ðfsigÞ=2jfsigi � e−it0E
−ðfsigÞ=2

jf−sigi, and the corresponding Floquet eigenvalues are
� exp½it0EþðfsigÞ�Þ. Hence, TTSB-2 is satisfied for h ¼ 0
and t1 ¼ π=2.
Stability of TTSB.—We now argue that the preceding

conclusions are no fluke: arbitrary weak local T-periodic
perturbations of the Floquet operator, such as nonzero h or
deviations of the length of the second time interval from
π=2, do not destroy TTSB, so long as a reasonable but
nontrivial assumption about resonances holds. Ordinarily,
there would be little doubt that SSB of a discrete symmetry
is stable to weak perturbations at zero temperature in 1D.
But since the symmetry in question is TTS, more care
seems necessary.
To build confidence in the stability of TTSB, we can

exploit the discrete local connectivity of fully MBL
systems: that is, for any eigenstate jii, and point x, there
is only a finite number of eigenstates jji such that the
matrix elements hijΦðxÞjji ≠ 0 for some operator ΦðxÞ
acting locally at x. In particular, generically, the (quasi-)
energy difference ωj − ωi for eigenstates connected in this
way will not be close to zero. In systems with such a local
spectral gap, one expects that “local perturbations perturb
locally” [51–54], or more precisely, that there exists a
single local unitary U (that is, a unitary which can be
expressed as the time evolution of a local Hamiltonian S)
which relates perturbed eigenstates to unperturbed eigen-
states [46]. Such a local unitary U cannot possibly connect
short-range correlated states with the long-range correlated
eigenstates found above. Therefore, the eigenstates of the
perturbed Floquet operator still satisfy TTSB-2.
We make these ideas more precise in the Supplemental

Material [55]. There, we construct the unitary U order by
order in perturbation theory and show that it remains local
at all orders, provided that the local spectral gap condition
holds. The skeptic might argue, however, that there will
always be rare regions (known as “resonances”) in which
the local spectral gap is arbitrarily small, and that this will
spoil the convergence of the perturbation theory. A rigorous
treatment of resonances is a difficult problem; however, the
principle of “local perturbations perturb locally” has, in
fact, been proven (given certain reasonable assumptions), at
least for a particular model of stationary MBL [56].
On the other hand, for sufficiently large perturbations,

resonances will proliferate and TTSB (and possibly MBL)
will be destroyed. The TTSB and MBL will be particularly
fragile for low frequencies T−1 ≪ J (see the Supplemental
Material [55] for details.)
Numerical analysis of Uf.—In order to confirm the

stability of TTSB, we will simulate the time evolution for
one class of perturbations, namely nonzero h in Eq. (1). In
the Supplemental Material [55], we also numerically
demonstrate stability with respect to variations of t1 (see,
also, Ref. [57]). Throughout, we will take J ¼ hz ¼ 1.

First, we use the time-evolving block decimation (TEBD)
scheme [58] to compute the time evolution of the short-
range correlated initial state ½cosðπ=8Þj↑iþsinðπ=8Þj↓i�⊗L

for system size L ¼ 200 and h ¼ 0.3 and t0 ¼ 1. The top
panel of Fig. 1 shows the expectation values of the Pauli
spin operators, averaged over 146 disorder configurations
and over the spatial interval i ∈ ½50; 150�. The TEBD
calculations were done with Trotter step 0.01T and bond
dimension χ ¼ 50. The spin-flip part of the Floquet
operator is applied instantaneously, which explains why
the oscillation appears to be steplike. After an initial
transient, the expectation values oscillate at frequency
π=T, half the drive frequency.
Lest a skeptic wonder whether such oscillations continue

to much later times or decay just beyond the times
accessible by TEBD, we analyze smaller systems by
numerical exact diagonalization (ED) of the Floquet
operator. To extract the time on which the magnetization
decays, we consider the time evolution of the magnetization
starting from random initial product states that are polarized
in the z direction, and compute the average ZðtÞ ¼
ð−1Þthσzi ðtÞisgnðhσzi ð0ÞiÞ over 500 disorder realizations

FIG. 1. The time evolution of a short-range correlated initial
state satisfies TTSB-1 for h ¼ 0.3. Top panel: the time depend-
ence of the disorder-averaged hσxi i, hσyi i, and hσzi i show that the
former two decay rapidly while the latter displays persistent
oscillations. (The spin-flip part of the Floquet operator is here
taken to be applied instantaneously.) Bottom panel: The decay of
the disorder-averaged magnetization, ZðtÞ, as defined in the main
text, is found to decay zero on a time scale that diverges
exponentially in the system size.
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and for a fixed position i. As shown in the bottom panel of
Fig. 1, there is an initial decay of this quantity, which for the
parameters chosen here occurs around t=T ¼ 10, and then a
plateau that extends up to a time that diverges exponentially
in the system size, and even for these small system sizes,
reaches times comparable to the inverse floating point
precision. In the Supplemental Material [55], we explore
these time scales in more detail and describe ways in which
signatures of TTSB can be observed for individual disorder
configurations (without disorder averaging).
We now turn to the ED of the Floquet operator to verify

that TTSB-2 holds. We diagonalize Uf for L ¼ 6, 8, 10, 12
sites and 3200 disorder realizations and compute the
mutual information between the left- and rightmost n sites,
labeled Fnn. We find that the mutual information obeys the
scaling form Fnnðh; LÞ ¼ Fnnðg;∞Þ þ cn exp½−L=ξðhÞ�.
We expect that Fnnðh;∞Þ ¼ 0 in the TTS-invariant phase,
h > hc, and Fnnðg;∞Þ > 0 in the TTSB phase, h < hc,
with Fnnðg;∞Þ → ln 2 as n → ∞. The results in Fig. 2 are
consistent with this form, with hc ≳ 1. It is remarkable that
scaling holds even for such small systems, and that F22 ≈
F33 ≈ log 2 for h < 0.3; evidently, L ¼ 12 and n ¼ 2, 3 are
not so far from the thermodynamic limit.
Implications of TTSB.—In systems exhibiting MBL, it is

commonly thought that there exists a complete set of local
integrals of motion (LIOMs): that is, there is a set of
quasilocal operators τzi which commute with each other and
with the Floquet operator Uf (or the Hamiltonian in the
static case), and such that the eigenvalues of τzi uniquely
specify a state in the Hilbert space [42,44,45]. Systems with
TTSB violate this principle. Indeed, in our model, at its
soluble point at h ¼ 0, the locally indistinguishable
states eit0E

−ðfsigÞ=2jfsigi � e−it0E
−ðfsigÞ=2jf−sigi are eigen-

states, with different quasienergy. No LIOM can

distinguish between these two states, so no set of
LIOMs can be complete. [Though the existence of a
complete set of LIOMs is sometimes taken as the definition
of MBL, the TTSB phase is still MBL in the sense of, for
example, long-time dynamics, since ðUfÞ2 does have a
complete set of LIOMs]. By a similar argument, one can
show that there does not exist a quasilocal effective
Hamiltonian Heff such that Uf ¼ expð−iTHeffÞ, whereas
for Floquet-MBL systems without TTSB, this is likely to be
the case [25,27].
As noted earlier, the oscillations arise from the occur-

rence of multiplets of states separated in Floquet eigen-
value byΩ=n, whereΩ ¼ 2π=T is the drive frequency. We
do not use this to identify the TTSB phase in ED because
the states are too closely spaced in energy to pick out such
multiplets. However, their existence suggests that the
system can radiate at frequency Ω=n. The fact that
systems oscillating in time can radiate has been cited
as an argument against the existence of TTSB [4,6], since
a system maintaining persistent oscillations while simul-
taneously radiating would be inconsistent with conser-
vation of energy. However, in the Floquet case, this is not
an issue since energy is being continually supplied by the
drive. (For details, see the Supplemental Material [55].)
On the other hand, in a system that breaks continuous
TTS, radiation would cause the system to decay to the
ground state, which is reason to doubt that continuous
TTSB can occur.
Discussion.—The model Eqs. (1) and (2) is soluble at

h ¼ 0 because the operator expðiðπ=2ÞPiσ
x
i Þ ¼

Q
iiσ

x
i that

is applied at the beginning of each driving cycle maps
eigenstates of HMBL to eigenstates of HMBL. Analogous
soluble models can be constructed for Zn spins in which
time translation by T is broken down to nT.
Our model has no symmetries, other than discrete time-

translation symmetry. Hence, the ln 2 that we find in the
mutual information must be a consequence of TTSB; there
is no other symmetry to break. However, TTSB can occur
in models with other symmetries. For example, in sym-
metry-protected topological (SPT) phases of Floquet-MBL
systems [31–34], TTSB can occur on the boundary.
The definition TTSB-1 naturally suggests an experiment

that could observe the phenomenon predicted here.
Signatures of MBL have been observed in trapped systems
of neutral atoms [59] and trapped ions [60], and signatures
of single-particle localization have been seen in coupled
superconducting qubits [61]. In any of these systems, one
can prepare an arbitrary initial product state, evolve to late
times according to a drive in the class considered here, and
measure the “spins” in the desired basis. Our prediction is
that persistent oscillations will be observed at a fraction of
the drive frequency.

D. E. acknowledges support from the Microsoft
Corporation.

FIG. 2. The mutual information between the n left- and right-
most sites, Fnn, for n ¼ 2 and n ¼ 3. The main panel shows
results for L ¼ 12, as well as the extrapolated value of F22 for
L → ∞. To extrapolate, we fit F22ðLÞ ¼ F22ð∞Þ þ ce−L=ξ, with
F22ð∞Þ, c, and ξ fit parameters. Example fits for h ¼ 0.1 and
h ¼ 0.9 are shown in the inset.
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