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A sudden quantum quench of a Bloch band from one topological phase toward another has been shown
to exhibit an intimate connection with the notion of a dynamical quantum phase transition (DQPT), where
the returning probability of the quenched state to the initial state—i.e., the Loschmidt echo—vanishes at
critical times ft�g. Analytical results to date are limited to two-band models, leaving the exact relation
between topology and DQPT unclear. In this Letter, we show that, for a general multiband system, a robust
DQPT relies on the existence of nodes (i.e., zeros) in the wave function overlap between the initial band and
the postquench energy eigenstates. These nodes are topologically protected if the two participating wave
functions have distinctive topological indices. We demonstrate these ideas in detail for both one and two
spatial dimensions using a three-band generalized Hofstadter model. We also discuss possible experimental
observations.
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Introduction.—Advances in experimental techniques,
particularly in cold atom systems [1–3], have reinvigo-
rated recent interest in quantum dynamics [4]. A para-
digmatic setup in this context is a quantum quench [5–9],
wherein a system is prepared as an eigenstate jΨi of an
initial Hamiltonian HI but evolved under a different
Hamiltonian HF. In a slow ramp [10,11], one has, in
addition, control over how fast the switching between HI
and HF can be, as well as what path to take in the space of
Hamiltonians. Since jΨi typically consists of many
excited states of HF with a nonthermal distribution, its
time evolution provides a unique venue for investigating
issues in nonequilibrium quantum statistical mechanics
such as thermalization, equilibration, and the lack thereof
[4,12–16]. A particularly fruitful approach to understand-
ing dynamics after a quantum quench is by exploiting the
formal similarity between the time evolution operator
expð−iHtÞ, and the thermal density operator expð−βHÞ.
This enables one to leverage and extend notions in
equilibrium statistical mechanics to the realm of quantum
dynamics. In this spirit, the return amplitude

GðtÞ ¼ hΨje−iHFtjΨi ¼
X
n

jhΦðnÞjΨij2e−iEnt ð1Þ

can be thought of as a partition function along imaginary
temperature β ¼ it, with the prepared state jΨi as a fixed
boundary [17]. Here, jΦðnÞi and En are eigenstates and
eigenvalues of the postquench HF, respectively. Heyl
et al. showed [18] that, analogous to the thermal free
energy, a dynamical free energy density [19] can be
defined, fðtÞ ¼ − logGðtÞ=L, where L is the system size.
Singularities in f then signifies the onset of what was

proposed as a dynamical quantum phase transition
(DQPT). In statistical mechanics, phase transitions are
closely related to the zeros of the partition function—
known as Fisher zeros—in the complex temperature plane
[20]. Historically, Yang and Lee were the first to connect
phase transitions with zeros of the partition function in
complexified parameter space [21]. While Fisher zeros are
always complex for finite systems, they may coalesce into
a continuum (a line in one parameter dimension, area in
two parameter dimensions, etc.) that cuts through the real
temperature axis in the thermodynamic limit, giving rise
to an equilibrium phase transition. Investigations on
DQPTs have followed a similar route by first solving
the Fisher zeros in the complex temperature plane, and
then identifying conditions for them to cross the axis of
imaginary temperature (real time). A DQPT is thus
mathematically identified as Gðt�Þ ¼ 0 at critical time(s)
t� [22]. DQPTs occur in both integrable [18,23–30] and
nonintegrable [19,31–34] spin systems for quenches
across quantum critical points. They can further be
classified by discontinuities in different orders of time
derivatives of fðtÞ [27,35] vis-à-vis their thermal counter-
parts. Very recently, DQPTs have also been shown to
constitute unstable fixed points in the renormalization
group flow, and they are therefore subject to the notion of
universality class and scaling [36].
Physically, the return amplitude GðtÞ is related to the

power spectrum of work performed during a quench,
GðωÞ ¼ P

njhΦðnÞjΨij2δ(ω − ðEn − EIÞ), which is the
Fourier transform of GðtÞe−iEIt, and EI is the energy of
the initial state [37–40]. This, in principle, makes GðtÞ—
and hence the DQPT—a measurable phenomenon. A
practically more viable route to experimental verification
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is through measuring time evolution of thermodynamic
quantities, which may exhibit postquench oscillations at a
time scale commensurate with the DQPT critical time t�,
and universal scaling near t� [41]. In band systems, as we
will show, they may also be identified by a complete
depletion at t� of the sublattice or the spin-polarized particle
density at certain crystal momenta; see Eq. (8).
Parallel to the development of DQPTs as the dynamical

analogue of equilibrium phase transitions is the inves-
tigation on its relation with topology [24–27]. This issue
arises naturally because, in the transverse field Ising
model, in which DQPTwas first discovered, the quantum
critical point can be mapped to a topological phase
transition at which the quantized Berry phase of the
fermionized Hamiltonian jumps between 0 and π. The
DQPT in this two-band fermion model was attributed to
the occurrence of “population inversion,” [18] where it
becomes equally probable to find the initial state in either
of the two postquench bands, a consequence of the Berry
phase jump [26]. The same analysis has been extended to
various two-band models in one- (1D) and two-spatial
dimensions (2D) [25–29], where a definitive connection
was found between the DQPT and the quench across
topological transitions, although some complications
exist [42]. DQPTs have also been demonstrated to occur
for quenches within the same topological phase
[24,25,33], although, from the point of view of topologi-
cal protection, these are not robust, as they require fine-
tuning of the Hamiltonians.
The purpose of this Letter is to develop a general theory

beyond two band models to clarify the relation between a
robust DQPT and topology. We will show that a robust
DQPT—one which is insensitive to the details of the pre-
and postquench Hamiltonians other than the phases to which
they belong—relies on the existence of zeros (or nodes) in
the wave function overlap between the initial band and all
eigenstates of the postquench Hamiltonian. These nodes are
topologically protected if the two participating wave func-
tions have distinctive topological indices: for example, the
Chern number difference jCψ − Cϕj provides a lower bound
to the number of k-space nodes in the overlap hϕkjψki; see
Theorem 1. These considerations lead to the notion of
topological and symmetry-protected DQPTs, which we will
demonstrate in detail using a three-band generalized
Hofstadter model. Analysis of a 1D three-band model
exhibiting a symmetry-protected DQPT can be found in
the Supplemental Material (SM) [43].
Amplitude and phase conditions of the DQPT.—The

DQPT conditionGðt�Þ ¼ 0 can be interpreted geometrically
as the complex numbers znðtÞ ¼ jhΦðnÞjΨij2e−iEnt forming a
closed polygon in the complex plane at t�; see Fig. 1. The
time-independent content of this observation is that the
amplitudes fjznjg satisfy a generalized triangle inequality,P

m≠njzmj ≥ jznj ∀n. Invoking hΨjΨi ¼ P
njznj ¼ 1, one

has the amplitude condition,

jznj ¼ jhΦðnÞjΨij2≤! 1
2

∀n: ð2Þ

For fjznjg’s that satisfy Eq. (2), solutions to
P

njznje−iφn ¼
0 exist and form a subspace Mfjznjg on the N-torus,

Mfjznjg ∈ T N∶
�
fe−iφng

����
XN
n¼1

jznje−iφn ¼ 0

�
: ð3Þ

To set off a DQPT, the dynamical phases must be able to
evolve into Mfjznjg. This constitutes the phase condition,

∃t�∶fe−iEnt�g ∈ Mfjznjg: ð4Þ

The DQPT requires both conditions to hold simultaneously.
Phase ergodicity in few-level systems.—At first glance,

the phase condition may seem to be the more stringent one.
After a quench across a quantum phase transition, a many-
body initial state jΨi typically has an overlap with an
extensive amount of eigenstates of the postquench
Hamiltonian HF, and the amplitudes hΦðnÞjΨi are therefore
generically exponentially small in system size, rendering
Eq. (2) satisfied in general. Existence of a DQPT then relies
entirely on the phase condition. Integrable systems, however,
point to the possibility that the amplitude and the phase
conditions may be intricately related and traded for one
another. Such systems can effectively be broken down into
few-level subsystems labeled by quantum numbers k, say,
Nk levels fEk;ng for n ¼ 1; 2;…; Nk in the k sector.
Correspondingly,GðtÞ ¼ Q

kGðk; tÞ. For the transverse field
Ising model, Kitaev’s honeycomb model [44], and band
insulator models, k is the Bloch momentum. It is known that
as long as the Nk − 1 gaps, Δk;n ¼ Ek;nþ1 − Ek;n, are not
rationally related, the dynamical phases fe−iEk;ntg are ergo-
dic on the Nk-torus up to an overall phase [45], and will
therefore evolve into its subspace Mfjznjg [Eq. (3)]. Phase
ergodicity thus guarantees the phase condition equation (4),

FIG. 1. Geometric representation of the DQPT condition
Gðt�Þ ¼ P

nznðt�Þ ¼ 0. fznðt�Þg must form a closed polygon
in the complex plane and would hence satisfy a generalized
triangle inequality jznj ≤

P
m≠njzmj. Wave function normaliza-

tion hΨjΨi ¼ P
njznj ¼ 1 then leads to jznj ≤ 1

2
.
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and the DQPT in each k sector depends entirely on the
amplitude condition.
Robust DQPT protected by nodes in wave function

overlap.—Hereafter, we focus on quenches in multiband
Bloch systems with NB bands. For simplicity, we use a
single filled band jψðkÞi as the prequench state.
Generalization to multiple filled bands is straightforward.
The postquench return amplitude is GðtÞ ¼ Q

kGðk; tÞ,

Gðk; tÞ ¼
XNB

n¼1

jhϕðnÞðkÞjψðkÞij2e−iεnðkÞt; ð5Þ

where jϕðnÞðkÞi and εnðkÞ are, respectively, the postquench
energy eigenstates and eigenvalues. Assume phase ergo-
dicity holds at all k points—this is a very relaxed require-
ment provided that there is no degeneracy at any k point.
Then the DQPTamounts to the existence of at least one k at
which Eq. (2) is satisfied, namely,

∃k ∈ Brillouin zone∶jhϕðnÞðkÞjψðkÞij2 ≤ 1

2
∀n: ð6Þ

We now discuss how Eq. (6)—and hence the DQPT—
can arise from nodes in wave function overlaps. Note that
this is not the only way to get a DQPT. Its virtue lies in its
robustness against perturbations to the Hamiltonians. In the
SM [43], we provide examples where DQPTs with no
overlap node can be easily avoided simply by Hamiltonian
parameter tuning without crossing a phase boundary. The
overlap nodes are, on the other hand, typically topologi-
cally protected, a point that we will return to later. Now
consider the following quench. Let a ¼ 1; 2;…; NB label
“sublattices,” which, in general, may also include other
degrees of freedom, e.g., orbitals, spins, etc. Prepare the
prequench state by filling a ¼ 1,

jΨi ¼
Y
r

ψ†
r;1j∅i ¼

Y
k

ψ†
k;1j∅i; ð7Þ

where ψ†
r;a creates an electron on sublattice a in unit cell r,

j∅i is the vacuum, ψ†
k;a ¼ ð1= ffiffiffiffi

N
p ÞPre

ik·rψ†
r;a, and N is the

total number of unit cells. The system is then time-evolved
under an integer quantum Hall Hamiltonian Ĥ ¼ P

k ĤðkÞ,
where ĤðkÞ ¼ PNB

a;b¼1Ha;bðkÞψ†
k;aψk;b ¼

PNB
n¼1 εk;nϕ

†
k;n

ϕk;n, and we assume that the Chern number of all bands
of ĤðkÞ are nonzero, Cn ≠ 0 ∀n. The overlap in Eq. (6) is

h∅jϕk;nψ
†
k;1j∅i ¼ ϕðnÞ

1 ðkÞ�, where ϕðnÞ
a ðkÞ ¼ hajϕðnÞðkÞi is

the ath component of jϕðnÞðkÞi ¼ (ϕðnÞ
1 ðkÞ;ϕðnÞ

2 ðkÞ;…;

ϕðnÞ
NB
ðkÞ)t, an eigenvector of the postquench Hamiltonian

matrix HðkÞ. It is known that any component ϕðnÞ
a ðkÞ ∀a

must have at least jCnj zeros in the Brillouin zone [46];
see also Theorem 1. Now assume that, at an arbitrary

Bloch momentum k0, ϕðn1Þ
1 has the highest weight:

jϕðn1Þ
1 ðk0Þj > jϕðn≠n1Þ

1 ðk0Þj. The existence of a node means

ϕðn1Þ
1 cannot remain as the highest weight element over the

entire Brillouin zone and hence must switch rank with the

second highest weight element—say, ϕðn2Þ
1 —at some point

kc: jϕðn1Þ
1 ðkcÞj ¼ jϕðn2Þ

1 ðkcÞj≥ jϕðn≠n1;n2Þ
1 ðkcÞj [47]. Together

with the normalization h∅jψ†
k;1ψk;1j∅i ¼ P

njϕðnÞ
1 j2 ¼ 1,

one concludes that, at k ¼ kc, Eq. (6) is satisfied.
Note that, in this case, the return amplitude Gðk; tÞ is

related to the k-space sublattice particle density,

ρk;aðtÞ≡ hΨðtÞjψ†
k;aψk;ajΨðtÞi ¼ jGðk; tÞj2: ð8Þ

A DQPT can thus be identified by ρk;aðt�Þ ¼ 0, i.e., a
complete depletion of particles with momentum k on
sublattice a (or orbital, spin, etc.), which may be exper-
imentally measurable.
The argument above for a node-protected DQPT applies

to all pre- and postquench combinations. In general, if the
overlap of the prequench band jψðkÞi with every eigenstate
jϕðnÞðkÞi ofHFðkÞ has nodes in the Brillouin zone, then the
triangle inequality Eq. (6) is guaranteed, and a robust
DQPTwould occur. This criterion can be written in a form
more amenable to numerical testing,

ψMaxMin ≡max
n

½min
k
jhϕðnÞðkÞjψðkÞij�; ð9Þ

ψMaxMin ¼ 0⇔Robust DQPT: ð10Þ

Topological protection of nodes in wave function
overlaps.—There is a curious connection between wave
function zeros and quantization. In elementary quantum
mechanics, nodes in the radial wave function is related to
the principal quantum number [48]. In continuum integer
quantum Hall systems, the number of nodes in the wave
function ψðrÞ ¼ hrjψi for r in a magnetic unit cell is given
by its Chern number magnitude jCj [46]. These nodes
persist even in the presence of weak disorder [49]. On a
lattice, jCj gives the number of k-space nodes in all wave
function components ψaðkÞ ¼ hajψðkÞi ∀a [46], a phe-
nomenon closely related to the energetic spectral flow of
the edge states [50]. Note that the relation between C and
wave function nodes relies on one participant of the overlap
—namely, the basis states jri and jai—to be topologically
trivial. If both participants can be nontrivial, the number of
nodes in their overlap should depend on both topological
indices on an equal footing. Indeed, we have the following
theorems.
Theorem 1.—In 2D, the overlap of Bloch bands jψðkÞi

and jϕðkÞi, with Chern numbers Cψ and Cϕ, respectively,
must have at least jCψ − Cϕj nodes in the Brillouin zone.
Theorem 2.—In 1D, the Berry phase γ of a real Bloch

band, jψðkÞi ¼ (ψ1ðkÞ;ψ2ðkÞ; � � � )t, ψaðkÞ ∈ R ∀a is
quantized to 0 or π. The overlap of two real bands,
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jψðkÞi and jϕðkÞi, with Berry phases γψ and γϕ, respec-
tively, must have at least one node if γψ ≠ γϕ. See the SM
[43] for a proof. Note that symmetry protection may
enforce a Hamiltonian to be real [51], leading to the real
bands in Theorem 2. This prompts the notion of symmetry-
protected DQPT, reminiscent of symmetry-protected topo-
logical phases that may be classified by topological
numbers at high-symmetry hypersurfaces [51–53]. An
example will be given later; see also the SM [43].
Generalized Hofstadter model.—We demonstrate ideas

discussed above using a generalized Hofstadter model,

Hðk; t; mÞ ¼

0
B@

d1 v1 v3eiky

v1 d2 v2
v3e−iky v2 d3

1
CA;

da ¼ 2 cosðkx þ aφÞ þ am;

va ¼ 1þ 2t cos

�
kx þ

�
aþ 1

2

�
φ

	
;

a ¼ 1; 2; 3;φ ¼ 2π

3
: ð11Þ

The nearest neighbor hopping is set at 1. At t ¼ m ¼ 0, we
recover the Hofstadter model [50,54–59] on a square lattice
with a magnetic flux φ per structural unit cell, and its
magnetic unit cell consists of three structural unit cells
along the y direction. t ≠ 0 allows for second neighbor (i.e.,
diagonal) hopping, and m ≠ 0 describes a flux-
commensurate on-site sawtooth potential. See the SM [43]
for a phase diagram. At ky ¼ 0 and π,HðkÞ is invariant under
the combined transformation of time reversal, HðkÞ →
H�ð−kÞ, and inversion, HðkÞ → Hð−kÞ, and hence is real.
Eigenstates there are subject to Theorem 2.
Now consider quenches in which the initial state is

prepared by filling one of the three bands of a prequench
Hamiltonian parametrized by ti, mi and evolved using a
postquench Hamiltonian with tf, mf [60]. In Fig. 2, we
keep ti, mi, mf fixed, and plot ψMaxMin, as defined in
[Eq. (9)] of the three prequench bands as functions of the
postquench tf. By varying tf, the postquenchHðkÞ is swept
through six different topological phases, as labeled
in Fig. 2.
Let us illustrate topological and symmetry-protected

DQPTs with two examples, using ψ ð2Þ as the prequench
state (the green squared line in Fig. 2). (i) Topological
DQPT protected by a 2D Chern number.— Consider the
quench from ψ ð2Þ to phase 5. In this case, the Chern number
of the prequench state (C ¼ −1) differs from all three
Chern numbers of the postquench Hamiltonian
(C ¼ ½1;−2; 1�); thus, from Theorem 1, all three overlaps
have nodes, and Eq. (6) is satisfied. (ii) Symmetry-protected
DQPT.— Consider the quench from ψ ð2Þ to phase 2. In this
case, the prequench Chern number (C ¼ −1) is identical to
at least one of the postquench Chern numbers
(C ¼ ½0; 1;−1�); hence, not all overlaps have nodes

originating from Theorem 1. Nevertheless, at ky ¼ 0 and
π, where the Hamiltonian is real, its eigenstates can be
classified by their Berry phases. One can find numerically
that, at ky ¼ 0, the Berry phase for ψ ð2Þ is γ ¼ 0, whereas
that of the postquench ϕð3Þ (the one with C ¼ −1) is γ ¼ π.
According to Theorem 2, therefore, hϕð3Þjψ ð2Þiky¼0ðkxÞ has
a node along kx. Nodes in overlaps of ψ ð2Þ with ϕð1Þ and
ϕð2Þ are still protected by Theorem 1. Thus, all three
overlaps have nodes and the DQPT is protected.
Details of all 18 quench types (three prequench states ×

six postquench phases) can be found in the SM [43]. We
should note here that out of all 18 types, two robust DQPTs
(ψ ð1Þ to phases 2 and 5) exhibit an even number of overlap
nodes at ky ¼ 0 and/or π not accounted for by Theorems 1
and 2. By tuning ti;f and mi;f, we were able to shift the
nodes along kx as well as to change the total number of
nodes by an even number, but we could not entirely
eliminate them. We suspect, however, that they could
eventually be eliminated in an enlarged parameter space.
Conclusion and discussion.—In this Letter, we showed

that, for quantum quenches between gapped phases in a
generic multiband system, a robust DQPT is a consequence
of momentum-space nodes (or zeros) in the wave function
overlap between the prequench state and all postquench
energy eigenstates. Nodes in wave function overlaps are
topologically protected if the topological indices of the two
participating wave functions—such as the Chern number in
2D and the Berry phase in 1D—are different.
Our main tenets here are the triangle inequality equa-

tion (6), and the phase ergodicity. It is interesting to note

FIG. 2. Plot of ψMaxMin [Eq. (9)] as functions of the postquench
t. The prequench state is prepared by filling one of the three bands
ψ ð1;2;3Þ of the generalized Hofstadter model Eq. (11) with
parameters ti ¼ 3 and mi ¼ 2.8. Postquench HðkÞ has fixed
mf ¼ 3 and a varying tf , sweeping it through six topological
phases labeled by its three Chern numbers (ordered from the
lower to the higher band). The prequench Hamiltonian is in phase
4. A robust DQPT can be identified by ψMaxMin ¼ 0 [Eq. (10)].
Note that ψMaxMin changes between zero and nonzero only at
phase boundaries, verifying robust DQPT as a feature of
topological phases insensitive to parameter tuning. See the SM
[43] for a detailed account of all 18 types of quenches shown
here.
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that collapsing a band gap would affect both conditions:
right at the gap collapsing point εðnÞk ¼ εðnþ1Þ

k , the two
phases become mutually locked; as the gap reopens, the
system has gone through a topological transition, which
changes the node structure in wave function overlaps. We
also note that while the existence of a topological and
symmetry-protected DQPT is insensitive to details of the
energy band structure, the exact times at which it would
occur will inevitably depend on the latter. The shortest
critical time will be upper bounded by the recurrence time
of the phases, which, for few-level systems such as band
insulators, should remain physically relevant [61].
The DQPT in band systems is, in principle, experimen-

tally measurable. As shown in Eq. (8), the DQPT can be
identified as the depletion of sublattice particle density
ρk;aðt�Þ, where sublattice a can also refer to the spin, the
orbital, etc. Particle density ρkðtÞ ¼

P
aρk;aðtÞ can already

be measured in cold atom systems by time-of-flight experi-
ments [1–3,55,63]. It is not hard to envisage an additional
procedure of sublattice isolation in such measurements,
e.g., by using a magnetic field for spin filtering, or by
releasing other sublattices b ≠ a slightly earlier than a.
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Note added in proof.—Recently, Ref. [64] appeared shortly
after the completion of this manuscript, where results
regarding topological nodes in wave function overlaps,
consistent with Theorems 1 and 2 presented here, are
obtained elegantly by appealing to adiabatic continuity. In
Ref. [65], topological nodes have also been connected to
non-analyticity in physical observables upon tuning the
postquench Hamiltonian across a topological transition. We
thank K. Sun and A. Das for communications.
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