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We find that both continuous and discontinuous hexatic-liquid transitions can happen in the melting of
two-dimensional solids of soft-core disks. For three typical model systems, Hertzian, harmonic, and
Gaussian-core models, we observe the same scenarios. These systems exhibit reentrant crystallization
(melting) with a maximum melting temperature Tm happening at a crossover density ρm. The hexatic-liquid
transition at a density smaller than ρm is discontinuous. Liquid and hexatic phases coexist in a density
interval, which becomes narrower with increasing temperature and tends to vanish approximately at Tm.
Above ρm, the transition is continuous, in agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young
theory. For these soft-core systems, the nature of the hexatic-liquid transition depends on density (pressure),
with the melting at ρm being a plausible transition point from discontinuous to continuous hexatic-liquid
transition.
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Two-dimensional melting is one of the most fascinating
and puzzling phase transitions [1–3]. In contrast to the first-
order nature in three dimensions, the possible existence of
an intermediate phase between liquid and solid, e.g., the
hexatic phase, confuses the nature of two-dimensional
melting. According to the Kosterlitz-Thouless-Halperin-
Nelson-Young (KTHNY) theory, the transitions from solid
to hexatic and from hexatic to liquid are both continuous,
accompanied by the disappearance of quasi-long-range
positional and orientational orders, respectively [4–7].
Many experiments and simulations have confirmed the
two-stage melting proposed by the KTHNY theory [8–17],
while there are still exceptions [1,18–20]. The continuity of
the hexatic-liquid transition also remains a matter of debate
[21,22].
Recent studies have suggested that the nature of the

hexatic-liquid transition is sensitive to the details of
interparticle potential, including range, softness, length
scale, and so on [14,23–25]. For instance, it has been
confirmed that the hexatic-liquid transition of hard disks is
first order [26–28]. In contrast, two-dimensional melting of
ultrasoft Gaussian-core particles was claimed to be con-
sistent with the KTHNY theory [23]. By tuning the
exponent of the inverse power-law interparticle potential
—and hence the particle softness—Kapfer and Krauth
observed the intriguing evolution of the hexatic-liquid
transition from discontinuous to continuous [25].
Consider a widely studied model system with finite

range, purely repulsive, and soft-core particle interaction
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where rij is the separation between particles i and j, σ is the
particle diameter, ΘðxÞ is the Heaviside function, ϵ is the
characteristic energy scale, and α is a tunable parameter. At
low temperatures and low densities, this system behaves as
a hard sphere (disk) system [29]. Its melting temperature
increases with density up to the maximum value Tm at a
crossover density ρm. Above ρm, the melting temperature
instead decreases with increasing density, exhibiting re-
entrant crystallization (melting) [23,30–32]. As shown in
Fig. 1 of the phase diagram for Hertzian repulsion
(α ¼ 5=2) in two dimensions, multiple reentrant crystal-
lizations with different crystal structures occur successively
with increasing density. Therefore, both the hard and
ultrasoft particle limits can be achieved with the same
model, just by varying the density. It is then interesting to
know whether both continuous and discontinuous hexatic-
liquid transitions can occur in the same system.
By systematically studying the two-dimensional melting

of Hertzian and harmonic (α ¼ 2) systems over a wide
range of densities, we indeed observe both types of the
hexatic-liquid transition. Interestingly, the crossover den-
sity ρm may act as the transition point between the two
types. When ρ < ρm, the transition is discontinuous,
showing the coexistence of liquid and hexatic phases.
The density region of the coexistence decreases with
increasing temperature and tends to vanish at Tm. When
ρ > ρm, the transition is continuous. We further verify that
the same scenario exists for the Gaussian-core model.
Therefore, we propose that density affects the nature of
the hexatic-liquid transition for soft-core particles exhibit-
ing reentrant crystallization.
Our systems are rectangular boxes containing N disks

with diameter σ and mass m. The systems have a side
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length ratio Lx∶Ly ¼ 2∶
ffiffiffi
3

p
to accommodate the perfect

triangular structure. Periodic boundary conditions are
applied in both directions. We set the units of mass, energy,
and length to be m, ϵ, and σ. The time is thus in units offfiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
. The temperature is in units of ϵ=kB, with kB

being the Boltzmann constant. The density is calculated
as ρ ¼ Nσ2=LxLy.
The liquid, hexatic, and solid phases are identified from

correlation functions of the bond-orientational and posi-
tional order parameters according to the KTHNY theory
[14,21,23,33–35]:

g6ðrÞ ¼ hψ�
6ð~riÞψ6ð~rjÞi; ð2Þ

gGðrÞ ¼ hei~G·ð~ri−~rjÞi; ð3Þ
where r ¼ j~ri − ~rjj is the separation between particles i and
j located at ~ri and ~rj, respectively, ~G is the wave vector
satisfying the periodic boundary conditions and at the first
peak of the static structure factor, and h:i denotes the
average over configurations and particles. The local bond-
orientational order parameter ψ6 for particle j is defined as

ψ6ð~rjÞ ¼
1

nj

Xnj
l¼1

ei6θð~rj−~rlÞ; ð4Þ

where the sum is over all nj nearest neighbors of particle j
determined by the Voronoi tessellation, and θð~rj − ~rlÞ is the
angle between ~rj − ~rl and a reference direction.

For the liquid phase, both g6ðrÞ and gGðrÞ show
exponential decay corresponding to short-range order.
The hexatic phase has quasi-long-range bond-orientational
order and short-range positional order, resulting in a power-
law decay of g6ðrÞ, g6ðrÞ ∼ r−η6 with η6 < 1=4, and an
exponential decay of gGðrÞ. For the solid phase, gGðrÞ ∼
r−ηG with ηG < 1=3 and g6ðrÞ shows almost no decay due
to the quasi-long-range positional order and long-range
bond-orientational order. In the Supplemental Material
[36], we show some examples of the correlation functions
and also the sub-block scaling analysis [37] to distinguish
different phases.
We first study systems of Hertzian and harmonic

repulsions. They have been widely employed in simulation
and theoretical work and have been shown to approximate
well interactions of various experimental systems such as
poly(N-isopropylacrylamide) colloids, granular materials,
and foams [38–40]. Both repulsions are soft core with
positive definite Fourier transform [36], leading to reentrant
crystallization [41]. Upon compression, there occurs a
sequence of reentrant crystallizations with different solid
structures [42]. In this Letter, we concentrate only on the
first one with the triangular structure.
Figure 1 is obtained by quenching high-temperatureN ¼

1024 states with a slow rate using constant-temperature and
constant-pressure molecular dynamics simulations [43].
We have verified that our quench rate is slow enough that
even slower quench rates will not change the phase diagram
significantly. The phase diagram shows approximate loca-
tions of the phase boundaries, which slightly vary with
system size due to finite size effects. The maximummelting
temperature Tm for Hertzian (harmonic) repulsion esti-
mated from the phase diagram is approximately 3.90 ×
10−3 (7.10 × 10−3) at a crossover density ρm ≈ 1.64 (1.42)
or pressure Pm ≈ 0.14 (0.19) [36].
The inset to Fig. 1 shows the isobaric equation of state

across the phase boundaries on both sides of and approx-
imately at Pm. When P < Pm, the density jumps up across
the transitions from liquid to solid. When P > Pm, the
system exhibits a waterlike anomaly with the density of
solid being lower than that of liquid. We find that the
absolute value of the fast density change jΔρPj decreases
when approaching Pm from either side. The melting at Pm
may behave as a turning point with ΔρP ¼ 0 [44]. As
shown in the inset to Fig. 1, there is almost no sign of a
density discontinuity when P ≈ Pm [45].
The melting at Tm looks special, at least for the

continuity in density. It is interesting to figure out what
role it plays in the two-dimensional melting of soft-core
systems. To probe the details of the melting, we simulate
much larger systems up to N ¼ 4 × 105 using a parallel
LAMMPS package [46] in an NρT or NPT ensemble and on
both sides of ρm.
We calculate the equilibrium isothermal equation of state

PðρÞ in the NρT ensemble across the transitions from solid
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FIG. 1. Phase diagram for N ¼ 1024 Hertzian disks in the
temperature T and density ρ plane. Here, we only show the
density region with triangular and square solid structures. There
are more structures at higher densities. The solid circles are
approximate phase boundaries, above which are pure liquid
states. The lines are a guide for the eye. The images for triangular
and square structures are taken from simulation snapshots, with
the particle diameters shown here being half of the actual values.
(Inset) ρðTÞ curves across the transitions at P ¼ 0.12 (dot
dashed), 0.14 (solid), and 0.16 (dashed). The solid and dashed
lines are shifted vertically by −0.06 and −0.117, respectively.
The solid circles demonstrate how the phase boundaries in the
main panel are determined.
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to liquid. Figure 2(a) shows PðρÞ forN ¼ 102 400Hertzian
disks calculated at T ¼ 3.00 × 10−3 and ρ < ρm. The curve
displays a Mayer-Wood loop [47], characterizing phase
coexistence. The loop is due to interface free energy
between coexistent phases in finite size systems [48,49].
We fit the curve with a tenth-order polynomial and
determine the boundaries of coexistence with the
Maxwell construction. Seen from Fig. 2(a), it is the
coexistence of hexatic and liquid phases because these
two phases exist on both sides of the coexistence.
The interface free energy per particle f is calculated as

half of the area encircled by the polynomial curve and the
horizontal line of the Maxwell construction. With increas-
ing system size, the Mayer-Wood loop flattens, so f tends
to decrease with an increasing N. Figure 2(b) shows that
f ∝ N−1=2, further demonstrating the discontinuous nature
of the hexatic-liquid transition at ρ < ρm [26,50].
Moreover, we find that the density interval of the phase

coexistence Δρcoex decreases with increasing temperature
approaching Tm from the ρ < ρm side. As shown in
Fig. 2(c), Δρcoex can be fitted well with a power-law

scaling relation: Δρcoex ∼ ðT�
m − TÞγ , where T�

m and γ are
interaction dependent fitting parameters. The value of T�

m

used in Fig. 2(c) is 3.86 × 10−3 (7.06 × 10−3) for Hertzian
(harmonic) repulsion, in good agreement with the Tm
estimated from the phase diagram. It is, thus, plausible
to conjecture that the hexatic-liquid transition at Tm
becomes continuous.
What may happen for melting at ρ > ρm? In Fig. 2(d),

we show PðρÞ at the same temperature as for Fig. 2(a), but
on the higher density side of ρm. Across the transitions, P
monotonically increases with ρ [51]. Therefore, the hex-
atic-liquid transition is continuous and agrees with the
KTHNY theory. We have also verified that the same
phenomenon occurs at all other temperatures.
In Fig. 3, we further compare the system size dependence

of the isobaric density ρðTÞ, the enthalpy HðTÞ, and the
average bond-orientational order Ψ6ðTÞ ¼ hψ6ðTÞi calcu-
lated in the NPT ensemble on both sides of Pm [52], where
h:i denotes the average over particles and configurations.
When P < Pm, all quantities apparently tend to be discon-
tinuous with increasing system size, while they do not show
such a tendency when P > Pm.
Figures 2 and 3 provide robust evidence to suggest that

the hexatic-liquid transition undergoes a transition from
discontinuous to continuous, with the melting at Tm being a
possible transition point. In Sec. IV of the Supplemental
Material [36], we provide further evidence by showing that
the correlation length in the liquid phase tends to diverge
approaching the maximum melting temperature from the
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FIG. 2. (a) Isothermal equation of state PðρÞ calculated at T ¼
3.00 × 10−3 across the melting at ρ < ρm for N ¼ 102 400
Herztian disks. We use different symbols as explained in the
legend to distinguish different states. The solid line is a tenth-
order polynomial fit to the data. The dashed line demonstrates the
Maxwell construction. (b) System size dependence of the inter-
face free energy per particle f for Hertzian disks calculated at
T ¼ 3.00 × 10−3. The area encircled by the solid and dashed
lines in (a) determines f. The line shows the scaling: f ∼ N−1=2.
(c) Temperature dependence of the density interval of phase
coexistence Δρcoex for Herztian (circles) and harmonic (squares)
repulsions. The lines show the scaling: Δρcoex ∼ ðT�

m − TÞγ , with
T�
m ¼ 3.86 × 10−3 (7.06 × 10−3) and γ ¼ 0.70 (0.50) for Herz-

tian (harmonic) repulsion. (d) Isothermal equation of state PðρÞ
calculated for the same system and at the same temperature as (a),
but across the transitions at ρ > ρm. The symbols have the same
meaning as in (a). The line is a guide for the eye.
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FIG. 3. System size dependence of the density ρðTÞ, enthalpy
per particle HðTÞ=N, and average bond-orientational order
Ψ6ðTÞ for Hertzian disks calculated at P ¼ 0.058 (< Pm, left
column) and 0.263 (> Pm, right column). The lines are a guide
for the eye.
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ρ < ρm side. Two different types of hexatic-liquid transition
can be achieved in the same system, just by tuning the
density. Now there comes the question of whether the
scenario is specific to systems described by Eq. (1) or exists
in other soft-core systems. Next, we will examine the
widely studied Gaussian-core model and show that our
observations are not unique to Hertzian and harmonic
repulsions.
The potential between interacting particles i and j for the

Gaussian-core model is UðrijÞ ¼ ϵ expð−r2ij=σ2Þ, with all
parameters having the samemeanings as in Eq. (1). We set a
potential cutoff at rc ¼ 4σ and shift the potential to make
sure that both the potential and the force vanish at rij ≥ rc.
We also use the same set of units as for Hertzian and
harmonic systems. The Gaussian-core model exhibits re-
entrant crystallization with maximum melting temperature
Tm ≈ 0.011 happening at Pm ≈ 0.16 and ρm ≈ 0.37 esti-
mated from the phase diagram of N ¼ 1024 systems [36].
Figure 4 compares isothermal PðρÞ for Gaussian-core

model calculated in the NρT ensemble on both sides of ρm
and at T ¼ 1.80 × 10−3. Like Hertzian and harmonic
repulsions, Fig. 4(a) shows that PðρÞ at ρ < ρm has a clear
Mayer-Wood loop, so the hexatic-liquid transition here is
discontinuous. The inset in Fig. 4(a) shows that the
coexistent region Δρcoex also decreases with increasing
temperature and can be well fitted with Δρcoex∼
ðT�

m − TÞγ , where T�
m ≈ 0.0114 agrees well with Tm

estimated from the phase diagram. Again, for the
Gaussian-core model, melting at Tm is likely to become
continuous. In contrast, the continuity of the transitions
above ρm is robust. The PðρÞ curve at ρ > ρm shown in
Fig. 4(b) is rather straight across the melting with an almost
density independent compressibility.
By studying three representative soft-core models exhib-

iting reentrant crystallization, we find that both continuous
and discontinuous hexatic-liquid transitions happen in the
same system. The type of the transition is determined by
density. Our data suggest that the melting point at the
maximum melting temperature may be the demarcation
between the two types of transitions. Note that Hertzian and
harmonic models are quite different from the Gaussian-core
model [36], but they still behave similarly in the hexatic-
liquid transition. Although it is impossible to check all
models, based on our study, we are inclined to believe that
our observations generalize to soft-core systems with
reentrant crystallization. Anyhow, our study reveals the
unknown extraordinary features of two-dimensional melt-
ing of soft-core systems, which can be tested in exper-
imental systems such as star polymers [53].
In addition to the hexatic phase, the existence of the

analogous tetratic phase upon the melting of solids with a
square lattice structure has been reported and discussed
[54–56]. However, compared to the hexatic phase, the
tetratic phase is much less studied. One possible reason is
that the square lattice structure is more difficult to form than
the triangular lattice. Hertzian and harmonic models exhibit
multiple reentrant crystallizations with various solid struc-
tures, which are ideal to investigate the tetratic phase and
other intermediate phases. It would be interesting to know
next whether we are able to observe different intermediate
phases in these simple model systems and whether the
melting of various types of solids follows similar scenarios
or not.
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