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We theoretically characterize the semiclassical dynamics of an ensemble of atoms after a sudden quench
across a driven-dissipative second-order phase transition. The atoms are driven by a laser and interact via
conservative and dissipative long-range forces mediated by the photons of a single-mode cavity. These
forces can cool the motion and, above a threshold value of the laser intensity, induce spatial ordering. We
show that the relaxation dynamics following the quench exhibits a long prethermalizing behavior which is
first dominated by coherent long-range forces and then by their interplay with dissipation. Remarkably,
dissipation-assisted prethermalization is orders of magnitude longer than prethermalization due to the
coherent dynamics. We show that it is associated with the creation of momentum-position correlations,
which remain nonzero for even longer times than mean-field predicts. This implies that cavity cooling of an
atomic ensemble into the self-organized phase can require longer time scales than the typical experimental
duration. In general, these results demonstrate that noise and dissipation can substantially slow down the
onset of thermalization in long-range interacting many-body systems.
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The quest for a systematic understanding of non-
equilibrium phenomena is an open problem in theoretical
physics for its importance in the description of dynamics
from the microscopic up to astrophysical scales [1–3].
Aspects of these dynamics are studied in the relaxation of
systems undergoing temporal changes (quenches) of the
control field across a critical point [4–6]. Quenches
across a nonequilibrium phase transition provide further
insight into the interplay between noise and external
drives on criticality and thermalization [7,8]. In this
context, photonic systems play a prominent role, thanks
to their versatility [9–15].
Polarizable particles in a high-finesse cavity, like in the

setup illustrated in Fig. 1(a), offer a unique system to study
relaxation in long-range interacting systems. Here, multiple
photon scattering mediates particle-particle interactions
whose range scales with the system size in a single-mode
cavity [15–18]. In this limit, atomic ensembles in cavities
are expected to share several features with other long-range
interacting systems such as gravitational clusters and non-
neutral plasmas in two or more dimensions [3,16,19]. The
equilibrium thermodynamics of these systems can exhibit
ensemble inequivalence [3,20], while quasistationary states
(QSSs) typically characterize the out-of-equilibrium
dynamics [3,21–23]. QSSs are metastable states in which
the system is expected to remain trapped in the thermo-
dynamic limit; they are Vlasov-stable solutions and thus
depend on the initial state. So far, however, evidence of
QSSs has been elusive. It has been conjectured that noise
and dissipation can set a time scale that limits the QSS
lifetime [24–27] and possibly gives rise to dynamical phase
transitions [25]. In Ref. [28], it was shown that, in the
presence of dissipation due to viscous damping or local

inelastic collisions, the relaxation dynamics of long-range
interacting systems can be cast in terms of so-called scaling
QSSs, which are solutions of the kinetic mean-field
equation and asymptotically tend to a unique QSS [28].
Accordingly, one would expect to observe QSSs in cavity
systems [19]. In Ref. [16], however, we found no evidence
of the typical superlinear dependence on N of the QSS time
scale [3], which we attributed to the effect of noise and
dissipative processes. Nonetheless, the dissipative dynam-
ics is here due to retardation effects in the coupling between
the atoms and a global variable, the cavity field, and can
also establish long-range correlations [29,30] whose influ-
ence on the relaxation dynamics is still unexplored.
In this work, we characterize the interplay between

dissipative and conservative long-range forces in the semi-
classical dynamics of N polarizable particles (atoms)
confined within a high-finesse single-mode cavity and
transversally driven by a laser [16,31–33] [see Fig. 1(a)].
The particles’ motion is along the cavity axis (x axis), and
the dynamics results from their optomechanical coupling
with the cavity mode at wave number k and spatial mode
function cosðkxÞ. We focus on the regime where the laser
frequency ωL is smaller than the cavity frequency ωc, such
that Δc ¼ ωL − ωc < 0. Here, the dynamics is character-
ized by a thermal stationary state, which can exhibit a
second-order driven-dissipative phase transition (spatial
self-organization) as a function of the laser intensity and
of Δc [31]. This transition is due to the interplay between
the dispersive and the dissipative forces: The dispersive
forces tend to order the atoms in gratings for which the
order parameter Θ ¼ P

N
j¼1 cosðkxjÞ=N → �1, with xj the

particles’ positions, and the intracavity photon number is
maximum. The dissipative forces, instead, are due to
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retardation effects in the dynamics of atoms and field:
For Δc < 0, they cool the atoms into a thermal state whose
effective temperature Teff is determined by Δc and by the
cavity loss rate κ: kBTeff ¼ ℏðΔ2

c þ κ2Þ=ð−4ΔcÞ, with kB
the Boltzmann constant [30–32,34–37]. Teff determines the
threshold Sc of the coherent laser scattering amplitude S per
atom at which spatial self-organization occurs, such thatffiffiffiffi
N

p
Sc ¼ 2kBTeff=ℏ [31,34,38], and separates the regime

where the spatial distribution is uniform and Θ≃ 0 from
the symmetry broken phase in which the atoms form Bragg
gratings, as shown in Fig. 1(b).
We analyze the semiclassical dynamics of the atoms

after a quench across the transition using a Fokker-
Planck equation (FPE) for the phase space distribution
fðx1;…; xN ;p1;…; pN ; tÞ at time t and as a function of the
atoms’ positions xj and the momenta pj. The FPE is valid
when the cavity linewidth κ exceeds the recoil frequency
ωr ¼ ℏk2=ð2mÞ and the width of the momentum distribu-
tionΔp is larger than the photon linear momentum ℏk [30].
It reads [31,39]

∂tf ¼ fH; fg þ n̄Lβf þOðU0Þ; ð1Þ

where Hamiltonian H ¼ P
N
j¼1 p

2
j=ð2mÞ þ ℏΔcn̄NΘ2

determines the coherent dynamics and is a realization of
the anisotropic Hamiltonian Mean Field model (HMF)
[16,21,40]. The dimensionless parameter n̄¼NS2=
ðκ2þΔ2

cÞ scales the depth of the conservative potential.
It also scales the dissipator Lβ, describing the effective
long-ranged friction and diffusion [30,31]:

Lβf ¼
XN
i

Γ
N

XN
j

sinðkxiÞ∂pi
sinðkxjÞ

�
pj þ

m
β
∂pj

�
f;

ð2Þ

with Γ ¼ 2ωrℏκβ and β ¼ ðkBTeffÞ−1. For Δc < 0, the
incoherent dynamics drives the system into the stationary
state fSðβ; n̄Þ ¼ f0 expð−βHÞ, where f0 warrants normali-
zation. This state is well defined in the thermodynamic
limit we choose, according to which, as N is increased, the
quantity NS2 (and thus n̄) is kept constant. This choice
warrants that the Hamiltonian satisfies Kac’s scaling [3].
The relaxation dynamics following a sudden quench at

t ¼ 0 is numerically evaluated by means of stochastic
differential equations (SDE). Averages are taken over
several trajectories, sampling the dynamics of N atoms
according to the given initial distribution [30,41]. Before
the quench is performed (t < 0), we assume that the system
has reached the equilibrium solution fSðβ; n̄iÞ of the FPE at
a given value of n̄ ¼ n̄i and Δc. At t ¼ 0, the value of n̄ is
quenched from n̄i < n̄c, deep in the disordered phase, to
n̄f > n̄c, well inside the ordered phase. This corresponds to
the horizontal path A of Fig. 1(b), keeping Δc, and hence
the asymptotic temperature, constant. We evolve the initial
state setting n̄ ¼ n̄f in Eq. (1). In what follows, we focus on
quenches from the disordered to the ordered phase along
path A; nevertheless, the essential features of the dynamics
we will report on characterize also the quenches in the
opposite direction as well as along paths of type B, which
connects points with different asymptotic temperatures (see
Supplemental Material [42]).
The time evolution of the modulus of the order parameter

hjΘji is displayed in Fig. 2(a) for different values of n̄f:
hjΘji tends towards an asymptotic value that is closer to
unity the larger is n̄f. Before reaching the steady state, the
dynamics go through different stages, which we classify as
follows: (i) A fast relaxation towards an intermediate value
of the magnetization with time scale t≲ 102κ−1; this time
scale decreases with n̄f. (ii) A transient regime where hjΘji
seems to grow logarithmically with time. (iii) Finally, the
dissipation becomes dominant and brings the system to the
asymptotic value, which is exponentially approached over
time scales of the order of 106κ−1. These time scales are
illustrated in Fig. 2(a) and here reported for N ¼ 50
particles but generally depend on N, as we discuss later on.
We first observe that, being Δc negative, the growth of

hjΘji [Fig. 2(a)] corresponds to a monotonic decrease of
the potential energy, V ¼ ℏΔcn̄NΘ2. In the fast relaxation
stage (i), this decrease is well fitted by an exponential and is
associated with a corresponding decrease of the relative
fluctuations (see the inset), indicating that the cavity field
exponentially grows and creates a mechanical potential,
which increasingly localizes the atoms at its minima.
The exponential potential depth growth is due to this

FIG. 1. (a) Atoms interact with the standing-wave mode of a
cavity and are transversally driven by a laser. The laser amplitude
(Ω) and/or frequency (Δc) are suddenly quenched across the
threshold, above which the atoms organize in regular spatial
patterns at the steady state. The coherent scattering amplitude per
atom, S, is tuned by the laser, S ∝ Ω, and the resonator dissipates
photons at rate κ. (b) Phase diagram of the second-order self-
organization transition as a function of n̄ (proportional to S2) and
Δc=κ (that determines the asymptotic temperature). The black
line separates the homogeneous phase (with order parameter
Θ ¼ 0) from the self-organized one (with Θ → �1). The red
dashed lines A and B illustrate the initial and final values,
respectively, of the sudden quenches we analyze.
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nonlinearity: The more the atoms become localized in the
Bragg grating, the larger is the scattering amplitude and,
thus, the potential depth. The increasing localization
correspondingly augments the kinetic energy, as visible
in Fig. 2(b). In this regime, thus, the total energy is
conserved, and the dynamics is coherent and consists in
a transfer of energy from spatial into momentum fluctua-
tions. Correspondingly, the single-particle momentum dis-
tribution becomes increasingly nonthermal, as visible by
inspecting the time evolution of the kurtosis, K ¼
hp4i=hp2i2, shown in the inset in Fig. 2(b):K exponentially
deviates from the value of the initial Gaussian (“thermal”)
state, for which Kgauss ¼ 3. We have verified that this
dynamics is well described by a Vlasov equation for the
single-particle distribution f1ðx; p; tÞ, which we derive
assuming fðx1;…; xN ;p1;…; pN ; tÞ ¼

Q
N
j¼1 f1ðxj; pj; tÞ,

integrating out the N − 1 variables from Eq. (1) for the
initial uniform distribution and taking the thermodynamic

limit (see Supplemental Material [42] and Ref. [43]).
Figure 3(a) compares the result of the FPE with the
predictions of the Vlasov equation (red curve), showing
an excellent agreement in the fast relaxation regime.
Numerical and analytical results show that the time scale
of this dynamics depends on N only through the parameter
n̄ (and is thus constant when Kac’s scaling applies); see also
Supplemental Material [42].
After this fast relaxation, the growth in the order

parameter and in the kinetic energy seems logarithmic in
time. This transient regime (ii) is of Hamiltonian origin:
It exhibits damped oscillations, which can be understood as
oscillations of the atoms at the minima. Energy is periodi-
cally transferred from the kinetic to the potential energy.
Since the potential energy depends on a global variable,
energy is exchanged between the particles by means of
elastic collisions, hence damping the oscillations.
Correspondingly, the kurtosis starts to increase towards
the Gaussian value, showing that the sample starts to
equilibrate. In order to verify this hypothesis, in Fig. 3(a),
we compare the predictions of the full simulation (black

(a)

(b)

FIG. 2. Numerical simulation of the dynamics following a
sudden quench along path A using the SDE [31]. At t ¼ 0, the
atoms are in the stationary state of Eq. (1) for n̄i ¼ 0.01n̄c with
Δc ¼ −κ, and n̄ is quenched to the value n̄f > n̄c [see the legend
in (a)]. (a) The modulus of the order parameter hjΘji and (b) the
single-particle kinetic energy hp2=ð2mÞi (in units of ℏωr) as a
function of time (in units of κ−1) for N ¼ 50. The corresponding
insets display the time evolution of the relative localization
δΘ=hjΘji, where δΘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΘ2i − hjΘji2

p
, and of the kurtosis K.

The initial values hjΘjit¼0 ≃ 1=
ffiffiffiffiffiffiffi
πN

p
≈ 0.08 in (a) are due to

finite N [31]. Here, κ ≈ 390ωr and NjU0j ¼ 0.05κ. The three
relaxation stages are indicated by the labels (i), (ii), and (iii).

(a)

(b)

FIG. 3. Dynamics following a sudden quench along path Awith
n̄f ¼ 2n̄c and N ¼ 200. At t ¼ 0, the atoms are in the stationary
state of Eq. (1) for n̄i ¼ 0.01n̄c and Δc ¼ −κ. Subplot (a) com-
pares the evolution of hjΘji and K (inset) obtained by integrating
Eq. (1) (black line) with the one found after setting Γ ¼ U0 ¼ 0
(blue line). The red line is the fit obtained by a stability analysis of
the homogeneous Vlasov solution, the dashed-dotted line by a
mean-field model (see Supplemental Material [42]). (b) Time
evolution of the QSS observable ϕ11 [Eq. (3)] corresponding to
the curves in (a).
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curves) for the order parameter and kurtosis with the ones
obtained after setting Γ ¼ 0 in Eq. (1) (blue curves): In the
transient regime, the curves nearly overlap for t≲ 104κ−1.
Noise and dissipation, however, lead to a discrepancy
between the predictions of the Hamiltonian and of the
full FPE. This discrepancy becomes increasingly evident
at longer time scales: When the dynamics is solely
Hamiltonian, in fact, the kurtosis increases monotonically
towards the Gaussian value. Because of the analogy with the
Hamiltonian dynamics, some of the features of the transient
regime are reminiscent of the HMF, where for a similar
quench a violent relaxation is observed and then followed by
prethermalization in a QSS [21,40]. In our case, for Γ ≠ 0,
as in Ref. [16], we do not find evidence of a superlinear
scaling withN of the QSS lifetime. The QSS lifetime, in fact,
is limited by the dissipative effects, which have the same
physical origin as the long-range conservative forces and
whose characteristic time scale is linear in N (see
Supplemental Material [42] and Ref. [43]). Note that at
the end of this stage the atoms are localized, but their
temperature is hotter than Teff .
In stage (iii), when the effect of dissipation becomes

relevant, the atoms are cooled and further localized at the
minima. The kurtosis, however, further decreases till
reaching a minimum, before increasing again towards
the Gaussian value. We first compare this behavior with
the predictions of a mean-field (MF) model, which we
extract from Eq. (1) by means of the factorization ansatz;
see Supplemental Material [42]. The gray lines in Fig. 3(a)
and its inset show the MF predictions as a function of time
and indicate that, even though MF reproduces qualitatively
the dynamical features, it fails to give the correct time scale
by at least one order of magnitude. Further insight is
provided by the observable for QSSs [28], which we here
define as

ϕ11 ¼
hj sinðkxÞpji

hj sinðkxÞjihjpji − 1: ð3Þ

When ϕ11 ≠ 0, the distribution is not factorizable into a
kinetic and a potential term. Figure 3(b) displays the time
evolution of ϕ11 for the Hamiltonian, mean-field, and full
dynamics. In stages (i) and (ii), the three models predict
approximately the same behavior. Instead, in stage (iii), ϕ11

evolves differently: For both MF and full FPE it exhibits a
minimum, however reached at different times, which seems
to possess the features of a scaling QSS, namely, a
sequence of QSSs with identical correlations [28]. Its
nature could be understood in terms of the onset of
collective oscillations which are (almost) decoupled from
noise and dissipation. Analogous behaviors have been
reported for the case of atomic arrays in a cavity
[29,44]. Since the trajectories of ϕ11 are different for the
three types of simulations, the corresponding QSSs are
expected to not be the same. In particular, the discrepancy

between full FPE and MF in stage (iii) remains of the
same order when scaling up the system, while instead
Hamiltonian prethermalization tends towards the corre-
sponding mean-field prediction. Figure 4 displays the
relaxation time scales for the MF and the full FPE: The
two curves suggest a linear increase with N for both cases;
nevertheless, they run parallel, thus showing that the
discrepancy is a scalable effect. We deduce that this
discrepancy is due to the momentum-position correlations
due to noise, which are otherwise discarded in the MF
treatment.
This prethermalization is not related to the critical

slowing down observed in Ref. [45] but is due to the
creation of correlations between momentum and position
and is reminiscent of kinetic-stop dynamics [46]. It implies
that cavity cooling of a large sample of atoms into the
self-organized phase, corresponding to a sudden quench
along path B, can be very slow and thus inefficient (see
also Ref. [34]). Our analysis sets the stage for the develop-
ment of a kinetic equation that is valid in the full quantum
regime [47–51].
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