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The longitudinal and transverse electromagnetic response functions of 12C are computed in a
“first-principles” Green’s function Monte Carlo calculation, based on realistic two- and three-nucleon
interactions and associated one- and two-body currents. We find excellent agreement between theory and
experiment and, in particular, no evidence for the quenching of the measured versus calculated longitudinal
response. This is further corroborated by a reanalysis of the Coulomb sum rule, in which the contributions
from the low-lying Jπ ¼ 2þ, 0þ2 (Hoyle), and 4þ states in 12C are accounted for explicitly in evaluating the
total inelastic strength.
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One of the challenges in quantum many-body physics is
calculating the electroweak response of a nucleus by fully
accounting for the dynamics of its constituent nucleons.
In this Letter we report the first such calculation for the
electromagnetic response of the 12C nucleus.
The nucleons interact with each other via two- and three-

body forces and with external electroweak fields via one-
and two-body, and smaller many-body, currents. This
dynamical picture of the nucleus in which the conse-
quences of the nucleons’ substructure on its structure
and response are subsumed into effective many-body forces
and currents is by now well established. When coupled to
numerically exact methods, such as the Green’s function
Monte Carlo (GFMC) methods adopted in this work, it has
led to a quantitative and successful “first-principles” under-
standing of many nuclear properties including the low-
lying energy spectra of nuclei up to 12C (Ref. [1] and
references therein), their radii and magnetic moments [2,3],
their elastic and inelastic electromagnetic form factors
[4,5], electroweak transitions between their low-lying states
(M1 and E2 widths [2,3], and β-decay and electron-capture
rates [6]), and properties of their ground-state structure,
such as the momentum distributions of nucleons and
nucleon pairs [7], and insights into the role that the
dominant features of the nuclear interaction—the short-
range repulsion and long-range tensor nature—have in
shaping their ground-state structure [8], and more (for a
recent review see Ref. [1]). One of the key features of this
approach is the assumption that the couplings of the
external fields to the nucleons are governed by those in
free space with modifications induced primarily by two-
nucleon currents. However, it should be emphasized that
the GFMC method, as presently formulated, cannot
account for explicit π-production processes; in particular,
it is not suitable to describe the Δ-excitation peak region.

Here, we report calculations of the 12C electromagnetic
longitudinal and transverse response functions, denoted,
respectively, as RLðq;ωÞ and RTðq;ωÞ, where q and ω are
the electron momentum and energy transfers. These
response functions are obtained experimentally by the
Rosenbluth separation of inclusive ðe; e0Þ scattering data
[9,10]. The calculations are based on the AV18þ IL7
combination of two- and three-nucleon potentials [11,12]
and the accompanying set of two-body electromagnetic
currents (for a review see Ref. [1] and references therein).
GFMC methods are used to compute these responses as
functions of imaginary time [13,14], and maximum-
entropy techniques to infer from these imaginary-time data
the actual RLðq;ωÞ and RTðq;ωÞ [15–17]. These latter two
aspects of this study are discussed below.
Accurate calculations of the nuclear response are necessary

to reliably test this realistic framework of nuclear dynamics.
In simplified approaches, for example, an increase in nucleon
size has been advocated to explain the depletion of the nuclear
structure functions measured by deep inelastic scattering
(the European Muon Collaboration (EMC) effect [18]), the
quenching of the quasielastic longitudinal responsemeasured
in (e, e0) scattering off light and heavy nuclear targets [19,20],
and the suppression in the ratio of transverse to longitudinal
polarization transfers in 4He relative to the ratio in hydrogen,
measured via the 4Heð~e; e0 ~pÞ3H reaction at quasielastic
kinematics at JeffersonLab (Ref. [21] and references therein).
Clearly, the question of in-medium modifications is

model dependent. Indeed, theoretical approaches based
on the realistic picture outlined above indicate that binding
and correlation effects, included by employing realistic
spectral functions, lead to average removal energies much
larger than those adopted in standard EMC calculations,
and provide a quantitative account of both the size
and density dependence of the EMC effect [22–24].
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Such approaches also show that spin-dependent final state
interaction effects and corrections beyond the impulse
approximation, induced by two-body electromagnetic
currents, resolve the discrepancy between theory and
experiment in the case of the polarization-transfer ratio
when the free nucleon electromagnetic form factors are
used in the nuclear currents [25].
The quark-meson coupling approach, which attempts to

self-consistently account for nucleon and nuclear structure
[26,27], leads to a reduction of the proton electric form factor,
and, as a consequence, to a significant quenching of the
longitudinal response function of nuclear matter and the
associated Coulomb sum rule [20]. Such a model does not
explain the large enhancement of the transverse response or
the momentum-transfer dependence in the quenching of the
longitudinal one. It should also be noted that medium
modifications are not an inevitable consequence of the quark
substructure of the nucleon. For example, a study of the two-
nucleon problem in a flux-tube model of six quarks interact-
ing via single gluon and pion exchanges [28] indicates that
the nucleons retain their individual identities down to very
short separations, with little distortion of their substructures.
In this Letter we show that accurate calculations of the

response based on a realistic correlated nuclear wave
function and containing one- and two-body currents with
free nucleon form factors can completely reproduce the 12C
longitudinal and transverse electromagnetic response
below the delta resonance.
The longitudinal and transverse response functions are

defined as

Rγðq;ωÞ ¼
X

f

hfjjγðq;ωÞj0ihfjjγðq;ωÞj0i�

× δðEf − ω − E0Þ; γ ¼ L; T; ð1Þ
where j0i and jfi represent the nuclear initial and final
states of energies E0 and Ef, and jLðq;ωÞ and jTðq;ωÞ are
the electromagnetic charge and current operators, respec-
tively. A direct calculation of Rγðq;ωÞ is impractical,
because it would require evaluating each individual tran-
sition amplitude j0i → jfi induced by the charge and
current operators. To circumvent this difficulty, the use
of integral transform techniques has proved to be quite
helpful. One such approach is based on the Laplace
transform of Rγðq;ωÞ—i.e., the Euclidean response [13]
defined as

Eγðq; τÞ ¼
Z

∞

ωþ
el

dωe−ωτ
Rγðq;ωÞ

½Gp
Eðq;ωÞ�2

; ð2Þ

where Gp
Eðq;ωÞ is the (free) proton electric form factor and

the integration excludes the contribution due to elastic
scattering (ωel is the energy of the recoiling ground state).
We elaborate this issue further below; for now it suffices to
note that, in the specific case of 12C, the ground state has
quantum numbers Jπ ¼ 0þ and therefore the elastic con-
tribution vanishes in the transverse channel. With the

definition given in Eq. (2), the Euclidean response function
above can be thought of as being due to pointlike,
but strongly interacting, nucleons, and can simply be
expressed as

Eγðq; τÞ ¼ h0jO†
γðqÞe−ðH−E0ÞτOγðqÞj0i − jFγðqÞj2e−τωel ;

ð3Þ
where H is the nuclear Hamiltonian (here, the AV18þ IL7
model), FγðqÞ ¼ h0jOγðqÞj0i is the elastic form factor, and
in the electromagnetic operators OγðqÞ the dependence on
the energy transfer ω has been removed by dividing the
current jγðq;ωÞ by Gp

Eðq;ωÞ [17]. The calculation of this
matrix element is then carried out with GFMC methods
[13] similar to those used in projecting out the exact ground
state of H from a trial state [29]. It proceeds in two steps.
First, an unconstrained imaginary-time propagation of the
state j0i is performed and saved. Next, the states OγðqÞj0i
are evolved in imaginary time following the path previously
saved. During this latter imaginary-time evolution, scalar
products of exp ½−ðH − E0Þτi�OγðqÞj0i with OγðqÞj0i are
evaluated on a grid of τi values, and from these scalar
products estimates for Eγðq; τiÞ are obtained (a complete
discussion of the methods is in Refs. [13,30]). We use our
best variational trial wave function ΨT for j0i and thus the
response functions are those of ΨT instead of the evolved
GFMC wave function. The sum rule results of Ref. [5]
indicate that for the momentum transfers we consider and
for ω in the quasielastic peak region, the accuracy of this
approximation is at the few percent level.
Following Ref. [17] (see also the extended material

submitted in support of that publication), we have exploited
maximum entropy techniques [15,16] to perform the
analytic continuation of the Euclidean response function
—corresponding to the inversion of the Laplace transform
of Eq. (2). However, we have improved on the inversion
procedure described in Ref. [17] in order to better propa-
gate the statistical errors associated with Eγðq; τÞ into
Rγðq;ωÞ. Specifically, the smallest possible value for the
parameter α (see Ref. [17]) of the maximum entropy
algorithm has been chosen to perform a first inversion of
the Laplace transform, which is then independent of the
prior. The resulting response function Rð0Þ is the one whose
Laplace transform Eð0Þ is the closest to the original average
GFMC Euclidean response. Then, 100 Euclidean response
functions are sampled from a multivariate Gaussian dis-
tribution, with the mean value Eð0Þ and covariance esti-
mated from the original set of GFMC Euclidean responses.
The corresponding response functions, obtained using the
so called “historic maximum entropy” technique [16], are
used to estimate the mean value and the variance of the final
inverted response function.
We now proceed to address the issue of excluding the

elastic contribution. The low-lying excitation spectrum of
12C consists of Jπ ¼ 2þ, 0þ2 (Hoyle), and 4þ states with
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excitation energies E⋆
f − E0 experimentally known to be,

respectively, 4.44, 7.65, and 14.08 in MeV units [31]. The
contributions of these states to the quasielastic longitudinal
and transverse response functions extracted from inclusive
(e, e0) cross section measurements are not included in the
experimental results. Therefore, before comparing experi-
ment with the present theory, which computes the total
inelastic response rather than just the quasielastic one, we
need to remove these contributions explicitly. This is
simply accomplished by first defining

Eγðq; τÞ ¼ Eγðq; τÞ −
X

f

jhfjOγðqÞj0ij2e−ðEf−E0Þ=τ; ð4Þ

where in the sum only the states f ¼ 2þ, 0þ2 , and 4þ are
included, and then inverting Eðq; τÞ (the energies Ef differ
fromE⋆

f , since the former include recoil kinetic energies).We
do not attempt a GFMC calculation of the excitation energies
of these states or associated transition form factors—it would
require explicit calculations of these states or propagating
exp ½−ðH − E0Þτ�OγðqÞj0i to computationally prohibitive
large values of τ. Rather, we use the experimental energies
and form factors, listed in Table I, to obtainEγðq; τÞ from the
GFMC-calculatedEγðq; τÞ. Because of the fast drop of these
form factors with increasing momentum transfer, the cor-
rection in Eq. (4) for the longitudinal channel (γ ¼ L) is
significant at q ¼ 300 MeV=c, but completely negligible at
q ¼ 570 MeV=c. In the case of the transverse channel
(γ ¼ T), possible contributions from E2 and E4 transitions
to the2þ and 4þ states are too small [40,41] to have an impact
on ETðq; τÞ.
The longitudinal and transverse response functions

obtained by the maximum-entropy inversion of the
Eγðq; τÞ’s are displayed in Figs. 1 and 2, respectively.
Theoretical predictions corresponding toGFMCcalculations
in which only one-body terms or both one- and two-body
terms are retained in the electromagnetic operators Oγ—
denoted by (red) dashed and (black) solid lines and labeled
GFMCO1b andGFMCO1bþ2b, respectively—are compared
to the experimental response functions determined from
the world data analysis of Jourdan [10] and, for
q ¼ 300 MeV=c, from the Saclay data [9]. The (red and
gray) shaded areas show the uncertainty derived from the
dependence of the 1b and 1bþ 2b results on the default

model adopted in the maximum-entropy inversion [17]. This
uncertainty is quite small. Lastly, the (green) dash-dotted
lines correspond to plane-wave-impulse-approximation
(PWIA) calculations using the single-nucleon momentum
distributionNðpÞ of 12C obtained in Ref. [7] (see Ref. [1] for
details on the PWIA calculation).
Figures 1 and 2 immediately lead to the main conclu-

sions of this work: (i) the dynamical approach outlined
above (with free nucleon electromagnetic form factors) is in
excellent agreement with experiment in both the longi-
tudinal and transverse channels, (ii) as illustrated by the
difference between the PWIA and GFMC one-body-current
predictions (curves labeled PWIA and GFMC O1b), corre-
lations and interaction effects in the final states redistribute
strength from the quasielastic peak to the threshold
and high-energy transfer regions, and (iii) while the
contributions from two-body charge operators tend to
slightly reduce RLðq;ωÞ in the threshold region, those
from two-body currents generate a large excess of strength
in RTðq;ωÞ over the whole ω spectrum (curves labeled
GFMC O1b and GFMC O1bþ2b), thus offsetting the
quenching noted in (ii) in the quasielastic peak.
As a result of this study, a consistent picture of the

electromagnetic response of nuclei emerges, which is at
variance with the conventional one of quasielastic

TABLE I. Measured longitudinal transition form factors,
defined as hfjOLðqÞj0i=Z, to the f ¼ 2þ, 0þ2 (Hoyle), and 4þ

states in 12C. Experimental data are from Refs. [32–34], and have
been divided by the proton electric form factor Gp

Eðq;ωfÞ with
ωf ¼ Ef − E0, as described in Ref. [35].

q ðMeV=cÞ 2þ 0þ2 4þ

300 0.128 0.0313 0.0010
380 0.0743 0.0052 0.0012
570 0.0043 0.0045 0.000 59

FIG. 1. Electromagnetic longitudinal response functions of 12C
for q in the range 300–570 MeV. Experimental data are from
Refs. [9,10]. See the text for further explanations.
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scattering as being dominated by a single-nucleon knock
out. This fact also has implications for the nuclear weak
response probed in inclusive neutrino scattering induced by
charge-changing and neutral current processes. In particu-
lar, the energy dependence of the cross section is quite
important in extracting neutrino oscillation parameters. An
earlier study of the sum rules associated with the weak
transverse and vector-axial interference response functions
in 12C found [42] a large enhancement due to two-body
currents in both the vector and axial components of the
neutral current. Only neutral weak processes have been
considered so far, but one would expect these conclusions
to remain valid in the case of charge-changing ones. In this
connection, it is important to realize that neutrino and
antineutrino cross sections differ only in the sign of this
vector-axial interference response, and that this difference
is crucial for inferring the charge-conjugation and parity
violating phase, one of the fundamental parameters of
neutrino physics, to be measured at the Deep Underground
Neutrino Experiment (DUNE)[43].
We conclude by updating in Fig. 3 the results for the

Coulomb sum rule of 12C obtained in Ref. [5]. The
theoretical calculation (solid line) is identical to the one

reported in that work. In the present analysis of the
experimental data (empty and full circles), the inelastic
threshold has been assumed to correspond to the energy of
the 4þ state rather than to that of the 2þ state, as we have
explicitly accounted for the transitions to the low-lying
states. We recall that the empty circles are obtained by
integrating RLðq;ωÞ up to ωmax, the highest measured
energy transfer, while the full circles also include the “tail”
contribution for ω > ωmax and into the timelike region
(ω > q), which cannot be accessed in (e, e0) scattering
experiments, by assuming that the longitudinal response in
12C is proportional to that of the deuteron [5]. As the direct
calculations demonstrate in Figs. 1 and 2, there is non-
vanishing strength in the timelike region (see in particular
the top panels of these figures which extend to ω > q), and
this strength needs to be accounted for before comparing
theory to experiment.
The square data points in Fig. 3 have been obtained by

adding to the full circles the contribution due to the low-
lying Jπ ¼ 2þ, 0þ2 , and 4þ states. Given the choice of
normalization for SLðqÞ in Fig. 3, this contribution is
simply given by the sum of the squares—each multiplied
by Z ¼ 6—of the (longitudinal) transition form factors
listed in Table I. Among these, the dominant one is the form
factor to the 2þ state at a 4.44 MeV excitation energy. The
contributions associated with these states, in particular the
2þ state, were overlooked in the analysis of Ref. [5] and, to
the best of our knowledge, in all preceding analyses—the
difference between the total inelastic and quasielastic
strength alluded to earlier was not fully appreciated.
While they are negligible at large q (certainly at
q ¼ 570 MeV=c), they are significant at low q. They help
to bring theory into excellent agreement with experiment.
Figures 1 and 2 clearly demonstrate that the picture of

interacting nucleons and currents quantitatively describes
the electromagnetic response of 12C in the quasielastic
regime. The key features necessary for this successful

FIG. 2. Same as Fig. 1 but for the electromagnetic transverse
response functions. Because pion production mechanisms are not
included, the present theory underestimates the (transverse)
strength in the Δ peak region; see in particular the q ¼
570 MeV=c case.

FIG. 3. Coulomb sum rule in 12C: theory (black solid line
labeled 1bþ 2b) and analyses of experimental data (blue empty
and full circles labeled EXP-TR and EXP) are from Ref. [5]; the
(red square) data points, labeled EXP-TFF, include the contri-
butions of the low-lying Jπ ¼ 2þ, 0þ2 (Hoyle), and 4þ states,;
see the text for explanations.
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description are a complete and consistent treatment of
initial-state correlations and final-state interactions and a
realistic treatment of two-nucleon currents, all fully and
exactly accounted for in the GFMC calculations. In the
transverse channel the interference between one- and two-
body current (schematically, 1b and 2b) contributions is
largely responsible for enhancement in the quasielastic
peak, while this interference plays a minor role at large ω,
where 2b-2b contributions become dominant. The absence
of explicit pion production mechanisms in this channel
restricts the applicability of the present theory to the
quasielastic region of RTðq;ωÞ, for ω’s below the
Δ-resonance peak. Finally, the so-called quenching of
the longitudinal response near the quasielastic peak
emerges in this study as a result of initial-state correlations
and final-state interactions.
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