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We study the correlations between the maxima m and M of a Brownian motion (BM) on the time
intervals ½0; t1� and ½0; t2�, with t2 > t1. We determine the exact forms of the distribution functions Pðm;MÞ
and PðG ¼ M −mÞ, and calculate the moments EfðM −mÞkg and the cross-moments EfmlMkg with

arbitrary integers l and k. We show that correlations between m and M decay as
ffiffiffiffiffiffiffiffiffiffi
t1=t2

p
when t2=t1 → ∞,

revealing strong memory effects in the statistics of the BM maxima. We also compute the Pearson
correlation coefficient ρðm;MÞ and the power spectrum ofMt, and we discuss a possibility of extracting the
ensemble-averaged diffusion coefficient in single-trajectory experiments using a single realization of the
maximum process.

DOI: 10.1103/PhysRevLett.117.080601

Brownian motion (BM) is a paradigmatic stochastic
process [1–4] with innumerable applications in physics
and chemistry [5,6], biology [7], computer science [8],
mathematical finance [9,10], etc. Much effort has been
invested in understanding the extreme value statistics
(EVS) of BM, e.g., maximal or minimal displacements,
spans, survival probabilities, persistence, and various first-
passage-time characteristics. Such results appear in numer-
ous studies, see, e.g., Refs. [11–32] emphasizing the
relevance of the EVS in diverse physical phenomena.
To the best of our knowledge, nothing is known about

temporal correlations of different extremes ofBM, although it
is interesting to probe how a maximum (minimum) achieved
on a certain time interval is correlated to an extremum
achieved on a longer time interval, how the span is correlated
at different time moments, how the first and the subsequent
passage times depend on each other, etc. Here we address
these conceptually important questions focusing on the
running maximum Mt ¼ max0≤s≤t Bs of a one-dimensional
BM trajectory Bs with B0 ¼ 0. We briefly write

m ¼ max0≤s≤t1Bs; M ¼ max0≤s≤t2Bs; t1 < t2

for the maxima achieved on the time interval ½0; t1� and a
longer time interval ½0; t2� (see Fig. 1). Our main goals are
to determine Pðm;MÞ, the joint probability distribution
function (PDF) of the maxima, and the PDF PðGÞ of the
gap G ¼ M −m between the maxima. These PDFs allow
us to calculate the cross-moments EfmlMkg, with arbitrary
integers l and k, and the moments EfðM −mÞkg of
arbitrary order k > 0. We will show thatm andM decouple
on much larger time scales than the positions of the BM,
revealing strong memory effects in the EVS of the BM.
Using our results we extract the Pearson correlation

coefficient and determine the power spectrum of Mt.
Finally, we discuss the possibility of extracting the ensem-
ble-averaged diffusion coefficient D in single-trajectory
experiments using a single realization of Mt.
We start by summarizing a few key properties of Mt

which we shall need. Denote by QtðMÞ the PDF of the
maximum M of BM on ½0; t�. This PDF is the one-sided
Gaussian distribution (see, e.g., [1–3])

QtðMÞ ¼ 1ffiffiffiffiffiffiffiffi
πDt

p exp

�
−
M2

4Dt

�
: ð1Þ

Using (1) one can express the moments EfMk
t g, with

arbitrary k > −1, through the gamma function

EfMk
t g

ð4DtÞk=2 ¼ Γ
�
kþ 1

2

�
=

ffiffiffi
π

p
: ð2Þ

t
t
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FIG. 1. A realization of a BM (blue) and the corresponding
maximum process Mt (red). M and m are the maxima of BM on
½0; t2� and ½0; t1�, respectively.
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Next, let ΠtðM; xÞ be the PDF that the BM is at x at time t
and it has achieved the maximum M during the time
interval ½0; t�. This PDF reads (see, e.g., [1–3])

ΠtðM; xÞ ¼ 2M − x

2
ffiffiffiffiffiffiffiffiffiffiffiffi
πD3t3

p exp
�
−
ð2M − xÞ2

4Dt

�
: ð3Þ

To determine the joint PDF Pðm;MÞ we will need an
auxiliary probability StðmÞ that the BM will not reach a
fixed level m > 0 within the time interval ½0; t�. This
probability is well known [1–4],

StðmÞ ¼ erf

�
mffiffiffiffiffiffiffiffi
4Dt

p
�
: ð4Þ

Here erfð·Þ is the error function. The joint PDF Pðm;MÞ
can be expressed as the sum of two contributions. The first
is due to trajectories Bs which reach a maximal value m for
s ∈ ½0; t1�, appear at some position x ≤ m at s ¼ t1, and
then reach a maximal value M > m for s ∈ ½t1; t2� (see
Fig. 2); the second is due to trajectories Bs which reach a
maximal value m for s ∈ ½0; t1�, appear at some position
x ≤ m at s ¼ t1, and in the following time interval s ∈
½t1; t2� do not reach m again, so that M ¼ m. We thus
formally represent Pðm;MÞ as

Pðm;MÞ ¼
Z

m

−∞
dxΠt1ðm; xÞQt2−t1ðM − xÞ

þ δðM −mÞ
Z

m

−∞
dxΠt1ðm; xÞSt2−t1ðm − xÞ:

ð5Þ

Using the definitions in (1), (3), and (4), and performing the
integrals in (5), we find the following exact result:

Pðm;MÞ ¼ ð2m−MÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
πD3t32

p exp

�
−
ðM − 2mÞ2

4Dt2

�

× erfc

� ffiffiffiffiffiffiffiffiffiffiffiffi
t2 − t1
Dt1t2

r
m
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1

Dt2ðt2 − t1Þ
r ðM −mÞ

2

�

þ 1

πDt2

ffiffiffiffiffiffiffiffiffiffiffiffi
t2 − t1
t1

r
exp

�
−

m2

4Dt1
−

ðM −mÞ2
4Dðt2 − t1Þ

�

þ δðM −mÞffiffiffiffiffiffiffiffiffiffi
πDt2

p exp

�
−

m2

4Dt2

�
erfc

� ffiffiffiffiffiffiffiffiffiffiffiffi
t2 − t1
Dt1t2

r
m
2

�
;

ð6Þ

where erfcð·Þ is the complementary error function.
Equation (6) is our central result, which allows for a

direct calculation of all other properties of interest. For
instance, using (6) we determine PðGÞ, the probability
density that M −m ¼ G ≥ 0,

PðGÞ ¼ 2

π
arcsin

� ffiffiffiffi
t1
t2

r �
δðGÞ

þ e−G
2=ð4Dt2Þffiffiffiffiffiffiffiffiffiffi
πDt2

p erfc

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1

Dt2ðt2 − t1Þ
r

G
2

�
: ð7Þ

The PDF of the gap between the first- and the second-
ordered maxima of a BM (a different quantity from the one
we consider) has been analyzed in Ref. [28].
Next, we determine the cross-moments of the maxima m

and M by simply integrating Pðm;MÞ in (6),

EfmlMkg
ð4Dt2ÞðlþkÞ=2

¼ zðkþlÞ=2

π

�Xk
n¼0

k
n
Γ
�
γ −

n
2

�

× Γ
�
nþ 1

2

��
1 − z
z

�
n=2

−
k2kΓðγ þ 1

2
Þ

4γ
ð1 − zÞγ

×
ffiffiffi
z

p Xk−1
n¼0

k − 1

n

Xl

p¼0

l
p

ðz − 1=2ÞnzpQn;p

ð1 − zÞ2μðγ − μÞ
�
; ð8Þ

with

Qn;p ¼ γ

μ 2F1

�
γ þ 1

2
; μ; μþ 1;

z
z − 1

�

þ ð−1Þnþpγ

μ

�
1 − z
z

�
2μ

2F1

�
γ þ 1

2
; μ; μþ 1;

z − 1

z

�

− ð−1Þnþp

�
1 − z
z

�
2μ

2F1

�
γ þ 1

2
; γ; γ þ 1;

z − 1

z

�

− 2F1

�
γ þ 1

2
; γ; γ þ 1;

z
z − 1

�
; ð9Þ

where 2F1 denotes the hypergeometric function and
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FIG. 2. Comparison of the power spectra of the maximum

process [solid line, (15)] and SðBMÞ
ν ðTÞ for the BM (dashed line).

Symbols denote the results of Monte Carlo (MC) simulations.
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γ ¼ kþ lþ 1

2
; μ ¼ nþ pþ 1

2
; z ¼ t1

t2
:

The first few cross-moments read

EfmMg
2Dt2

¼ z
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp
π

þ 1

π
arcsinð ffiffiffi

z
p Þ;

EfmM2g
ð4Dt2Þ3=2

¼ z3=2 þ 3
ffiffiffi
z

p þ 2 − 2ð1 − zÞ3=2
6

ffiffiffi
π

p ;

Efm2Mg
ð4Dt2Þ3=2

¼ 2z3=2 þ 1 − ð1 − zÞ3=2
3

ffiffiffi
π

p ;

Efm2M2g
8ðDt2Þ2

¼ zð1þ zÞ
2

þ ð2z − 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp

π

þ 1

π
arcsinð ffiffiffi

z
p Þ: ð10Þ

To highlight the decay of correlations between m and M
when t2 → ∞ and t1 is kept fixed, we formally rewrite
[taking advantage of (2)] the first expression in (10) as

EfmMg
EfmgEfMg ¼ 1þ π

4

ffiffiffi
z

p þOðzÞ; ð11Þ

implying that correlations decouple slowly, as
ffiffiffiffiffiffiffiffiffiffi
t1=t2

p
.

From (7) we find the moments of the gap

EfGkg
ð4Dt2Þk=2

≡ EfðM −mÞkg
ð4Dt2Þk=2

¼ Γðkþ1
2
Þffiffiffi

π
p

−
kΓðk

2
Þ ffiffiffi

z
p ð1 − zÞðkþ1Þ=2

π 2F1

�
1;
k
2
þ 1;

3

2
; z

�

ð12Þ

for arbitrary k > −1. For example, for k ¼ 2 we have

EfðM −mÞ2g ¼ 4Dt2
π

ðarccosð ffiffiffi
z

p Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞ

p
Þ

¼ EfM2g
�
1 −

4

π

ffiffiffi
z

p þOðz3=2Þ
�
; ð13Þ

which implies that the memory of m fades as
ffiffiffiffiffiffiffiffiffiffi
t1=t2

p
. The

correlations between positions of the BM itself,
EfðBt2 − Bt1Þ2g ¼ EfB2

t2gð1 − t1=t2Þ, decay much faster.
Because 2F1ða; b; c; zÞ → 1 when z → 0, Eq. (12) yields
EfGkg=EfMkg ¼ 1þOð ffiffiffiffiffiffiffiffiffiffi

t1=t2
p Þ for any k > −1 and

t1=t2 ≪ 1.
We consider several direct applications of our exact

results.
(i) First, we calculate the Pearson’s coefficient ρ ¼

Covðm;MÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðmÞVarðMÞp

which is a measure of the
linear correlation between m and M,

ρ ¼
ðπ
2

ffiffiffi
z

p
− 2þ ffiffiffiffiffiffiffiffiffiffi

1 − z
p þ arcsinð ffiffi

z
p Þffiffi
z

p Þ
π − 2

: ð14Þ

We observe that ρ is a monotonically increasing function of
z and that ρ ≥ ρBMðBt1 ; Bt2Þ≡

ffiffiffi
z

p
, where ρBM is the

Pearson coefficient for the BM, which again implies that
Mt is more strongly correlated than the BM itself.
(ii) Further, for the power spectrum SνðTÞ of Mt we get

SνðTÞ ¼
1

T
E

�����
Z

T

0

eiνtMtdt

����
2
	

¼ 2D
ν2

�
1 −

sin ðνTÞ
νT

þ 2 sin

�
νT
2

�
J1

�
νT
2

��
; ð15Þ

where J1ð·Þ is the Bessel function. This result (valid for any
ν and T) can be compared with the power spectrum of

the BM, SðBMÞ
ν ðTÞ≡ 4D½1 − sinðνTÞ=νT�=ν2 (see Fig. 2).

Despite strong correlations and an intermittent character of
the maximum processMt, its limiting power spectrum Sν ¼
limT→∞SνðTÞ ¼ 2D=ν2 exhibits the same ν−2 decay as the
BM, but the amplitude is 2 times smaller. This limit,
however, is approached as 1=

ffiffiffiffi
T

p
, as compared to the 1=T

relaxation taking place for the BM. Indeed, for Mt we
observe much stronger oscillations than for the BM
(see Fig. 2).
(iii) Finally, we inquire about a possibility of extracting

the ensemble-averaged diffusion coefficient D from a
single realization of the maximum process Mt. Recently,
much effort has been invested in understanding how to do
this using Bs itself; see, e.g., [33–39]. In particular, it was
realized that a time-averaged functional of the form

Dmsd ¼
1

2τðT − τÞ
Z

T−τ

0

dtðBtþτ − BtÞ2; ð16Þ

where τ > 0 is the time lag and T the total observation time,
is an efficient estimator of D. The point is that for the BM
the variance VarðDmsdÞ of the estimator (16) vanishes with
the observation time as 1=T (see, e.g., [35]), which means
that for any realization of Bt the estimator converges to D
with probability 1 as T → ∞.
On the other hand, if the BM takes place in bounded

microdomains, i.e., in cells, the limit T → ∞ cannot be
taken safely because Bt will start to feel the confinement at
a certain moment and Dmsd will probe the finite-size rather
than D. It means that the observation has to be interrupted
at some T when the variance of Dmsd is still finite. In this
regard, it may be useful to have other tools to deduceD that
will work reliably at short T.
Here we present an example of the estimator of D that

uses Mt instead of Bt itself, and has a variance that is
independent of T and can be made arbitrarily small (e.g.,
smaller than experimental blur) by an appropriate tuning of
some control parameter. We note also that usingMt instead
of Bs has a number of advantages: (i) such an approach
requires less data—keeping track of Bt creates a set of size
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∼T, while in the case of Mt one has to record only the
events when Mt changes its value, which, on average,
happens only

ffiffiffiffi
T

p
times [27]; (ii) one may expect [40] that

the estimators of D based on a single realization of Mt are
less “noisy” than those based on Bt, because Mt already
filters a great deal of fluctuations of Bt (see Fig. 1).
Let Bs be a projection of an experimentally tracked

d-dimensional Brownian trajectory Bs on one of the axes,
and denote by Mt the running maximum of this projection
Bs. Suppose we want to fit a random curve Mk

t , where
k is a positive number, by some deterministic curve using
the least-squares approximation. A natural choice of the
deterministic curve is provided by Eq. (2) in which we
replace D by an estimated “diffusion coefficient” Des.
We construct then a functional of squared residuals,

F ¼
Z

T

0

�
Mk

t − Γ
�
kþ 1

2

� ð4DestÞk=2ffiffiffi
π

p
�
2

dt ð17Þ

Regarding Des as an optimization parameter, we minimize
F and find the minimum

fk ≡Dk=2
es ¼

ffiffiffi
π

p ðk
2
þ 1Þ

2kΓðkþ1
2
ÞTk=2þ1

Z
T

0

Mk
t dt ð18Þ

providing us with a k-parametrized family of estimators
minimizing an error in the least-squares fitting of Mk

t of a
given realization ofMt. While the ensemble-averaged value
is Effkg≡Dk=2, fk fluctuates around this value giving
an estimate Dk=2

es of the actual value Dk=2. To quantify the
fluctuations of fk we use Eq. (8) to compute [41] the
variance of fk

VarðfkÞ
Dk ¼

ffiffiffi
π

p ðkþ 2Þð3kþ 2ÞΓðkþ 1=2Þ
f4Γ½ðkþ 3Þ=2�g2 − 1: ð19Þ

Numerical simulations indicate the validity of (19) for
non-negative, not necessarily integer, values of k (see
Fig. 3). Inspecting Eq. (19), we observe that VarðfkÞ is a
nonmonotonic (for D < 1=2) function of k which vanishes
when k → 0 or k → ∞, suggesting that we have to take
either very small or very big values of k in order to minimize
the error of the estimator in Eq. (18). We have not been able
to determine the distribution PðfkÞ, so we resorted to
numerical analysis to get the variance of the nonlinearly
transformed variable Des ¼ f2=kk . The results of our MC
simulations (Fig. 4) show that VarðDesÞ is a nonmonotonic
function of k and it is indeed advantageous to use big values
of k for which this variance can be made arbitrarily small.
The variance VarðDesÞ is independent of time, yet in

practice one records the trajectory Bt at discrete time
moments; in this case VarNðDesÞ starts to depend on the
number N of recorded points, attaining the limiting value
VarðDesÞ when N → ∞. In the inset to Fig. 4 we plot the
results of the MC simulations for the deviation δ2ðDesÞ ¼
½VarðDesÞ − VarNðDesÞ�=D2 as a function of N for several

values of the control parameter k. We observe that the
curves corresponding to different values of k collapse when
we plot k2

ffiffiffiffi
N

p
δ2ðDesÞ, implying that δ2ðDesÞ ∼ c=ðk2 ffiffiffiffi

N
p Þ,

where c is a constant of order of unity. Thus, the error
stemming out of a finite N can be made arbitrarily small by
choosing a sufficiently large value of k.
Finally, in Fig. 5 we compare the variance of the

commonly used estimator in Eq. (16) against the variance
of the estimator Des, based on Mt. We observe that at short
times the latter is much smaller, which supports our guess
that the ensemble-averaged diffusion coefficient D can be
reliably deduced from estimators based on Mt. Seeking
other estimators based on extremal properties of Bt that
possess an ergodic property suggests an interesting new
field of research.
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FIG. 3. The variance of fk as a function of k for D ¼ 0.25,
D ¼ 0.01, and D ¼ 0.005 (from top to bottom). Solid lines are
Eq. (19) with k considered as a continuous variable, while the
symbols are the results of the MC simulations.
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FIG. 4. VarðDes ¼ f2=kk Þ=D2 using a nonlinearly transformed
estimator in Eq. (18) as a function of k for D ¼ 0.25, D ¼ 0.01,
and D ¼ 0.005 (from top to bottom). The solid line is 1=k2. The
inset shows the dependence of the deviation δ2ðDesÞ (see the text)
on the number N of recorded points of a discretized trajectory.
Different colors correspond to k ¼ 10 (blue), k ¼ 50 (green), and
k ¼ 102 (red).
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