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A fundamental and open question is whether cross-Kerr nonlinearities can be used to construct a
controlled-PHASE (CPHASE) gate. Here we propose a gate constructed from a discrete set of atom-mediated
cross-Kerr interaction sites with counterpropagating photons. We show that the average gate fidelity F
between a CPHASE and our proposed gate increases as the number of interaction sites increases and the
spectral width of the photon decreases; e.g., with 12 sites we find F > 99%.
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Photons are attractive in quantum informationprocessing as
flying qubits and as a quantum computing platform. To realize
the full benefits of quantum photonic applications, a non-
linearity or photon-photon interaction is usually required.
However, photons only interact in contrived situations [1];
thus, most interactions between photons are effective, i.e.,
mediated by matter. For optical quantum computing, in a dual
rail encoding, a natural entanglinggate is the controlled-PHASE
(CPHASE) gate [2,3]. Unfortunately, the photon-photon inter-
actions required for a CPHASE gate are hard to engineer. Thus,
muchof the progress in the field of optical quantumcomputing
has focused on the Knill-Laflamme-Milburn scheme [4]
or measurement-based quantum computing [5–7], which
circumvent these issues by use of nondeterministic
measurement-induced nonlinearities.
Cross-Kerr interactions have been suggested as a route to

a deterministic Fredkin gate by Milburn [8] and a CPHASE

gate by Chuang and Yamamoto [9]. These proposals have
received less attention than linear-optical schemes due to
two obstacles. First, bulk cross-Kerr nonlinearities have
historically been very small [10]. However, experiments in
cavity-QED [11], circuit-QED [12], and ensemble systems
[13], have already demonstrated large cross phase shifts of
order one radian per photon.
Second, single-mode analyses fail to account for multi-

mode effects that preclude a high-fidelity CPHASE gate, as
pointed out by Shapiro [14] and Gea-Banacloche [15]. In
principle, a CPHASE gate could be implemented by a
frequency-local interaction, i.e., with a Hamiltonian pro-
portional to a†ðωÞaðωÞb†ðωÞbðωÞ. However, physically
realistic cross-Kerr effects are spatially localized, e.g.,
a†ðxÞaðxÞb†ðxÞbðxÞ, because they must be mediated by
atoms. This creates a tension between the spectral width of
the quanta and the response time of the Kerr medium. If two
temporally broad (spectrally narrow) photons impinge on
the medium, they are likely to both be absorbed by the
atoms, but not at the same interaction site, so no interaction
occurs. When temporally narrow (spectrally broad) photons

impinge on the medium, the atoms cannot absorb the
photons before they leave the interaction site, and again no
interaction occurs. Shapiro [14] arrives at similar conclu-
sions via a phenomenological model of the cross-Kerr
interaction, which includes a fidelity-degrading phase-
noise [16] term. In an intermediate regime, a more
fundamental problem with spatially local interactions is
that they generate spectral entanglement [15], e.g., when
different frequencies gather different cross-phase shifts, or
there is frequency mixing. As a consequence of these
arguments, it has become folklore that the multimode
nature of photons is a fundamental obstacle for constructing
a CPHASE gate from Kerr nonlinearities, even in the absence
of other imperfections.
Here we provide a counterexample to this claim, by

constructing a high-fidelity CPHASE gate using photons that
counterpropagate through N atom-mediated cross-Kerr
interaction sites. In particular, as N increases and the
spectral width of the photons decreases, our proposal
tends to a perfect CPHASE gate. Furthermore, because we
do not rely on any phenomenology, our results unambig-
uously show that the multimode nature of the field is not a
fundamental obstacle to quantum computation.
There are other proposals for CPHASE gates based on

atom-mediated interactions, see Refs. [17–21]. Our pro-
posal was motivated by Ref. [22], where a CPHASE gate was
built by a random walk of counterpropagating qubit waves.
Counterpropagating photonic wave packets, with inter-
actions mediated by Rydberg atoms or atomic vapors,
were investigated in Refs. [23–26]. Our Letter improves on
previous proposals in two ways. First, our construction
requires no active elements, such as error correction,
control pulses, switches, or memories. Second, high fidel-
ities (F > 99%) are obtainable with relatively few inter-
action sites (N ¼ 12).
Our main goal is to construct a gate that entangles two

qubits encoded in dual-rail states (see, e.g., [2]) or,
equivalently, enact the two-mode transformation,
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j0ia ⊗ j0ib → j0ia ⊗ j0ib; ð1aÞ

j0ia ⊗ j1ξib → j0ia ⊗ j1ξib; ð1bÞ

j1ξia ⊗ j0ib → j1ξia ⊗ j0ib; ð1cÞ

j1ξia ⊗ j1ξib → eiϕj1ξia ⊗ j1ξib; ð1dÞ

where a and b are photonic modes, j0i indicates a multi-
mode vacuum, j1ξi ¼

R
dωξðωÞa†ðωÞj0i is a single photon

in the wave packet ξðωÞ, and ½aðωÞ; a†ðω0Þ� ¼ δðω − ω0Þ.
Any nontrivial phase (0 < ϕ < 2π) in Eq. (1d) enables
quantum computation, but we are interested in the case
ϕ ¼ π, which corresponds to the CPHASE gate.
To characterize the action of a medium on multimode

light, we use the S matrix from scattering theory. The S
matrix is a unitary matrix connecting asymptotic input and
output field states, i.e., jωouti ¼ Sjνini, while capturing the
relevant effects of the medium. The ideal S matrices
corresponding to Eqs. (1a)–(1d) would be Sid;1ðωk; νkÞ ¼
δðωk − νkÞ for single-photon states and Sid;2ðωa;ωb;
νa; νbÞ ¼ eiϕSid;1ðωa; νaÞSid;1ðωb; νbÞ for two-photon
states, where input (output) frequencies are denoted
by νk (ωk), for k ¼ fa; bg. Typically, however, the actual
S matrices for matter-mediated interactions are of the form
Sact;1ðωk;νkÞ¼eiϕkδðωk−νkÞ and Sact;2ðωa;ωb; νa; νbÞ ¼
Sact;1ðωa; νaÞSact;1ðωb; νbÞ þ Cδðωa þ ωb − νa − νbÞ,
where the coefficient C depends on all frequencies and the
parameters of the interaction mediators [27,28]. The phase
eiϕk in Sact;1 leads to a deformation of the single-photon
wave packets, while the function δðωa þ ωb − νa − νbÞ in
Sact;2, which arises from energy conservation [27], is
usually identified as the source of spectral entanglement.
One important choice we make is to ignore single-

photon deformation, which is enforced by mapping all S
matrices as S → S†act;1ðωa; νaÞS†act;1ðωb; νbÞS. Most pre-
vious proposals do not do this (e.g., [15]), which accounts
for part of the discrepancy in the maximum fidelities
obtained. Single-photon deformation could have two neg-
ative effects for our proposal. First, it might disrupt linear-
optical steps of the computation. This can be avoided by
ensuring all photons are deformed equally at each computa-
tional time step [29]. Second, our results are obtained for
specific input wave packet shapes, so single-photon effects
could significantly degrade the fidelity of subsequent gates;
later, we show that this is not the case for a few rounds of
deformation. It is then possible to use measurement-based
quantum computing, where each photon experiences at
most two CPHASE gates [30], or teleportation-based error
correction [31]. Finally, it is also possible to physically
undo this deformation if necessary, as proposed in,
e.g., Ref. [19].
Ideally, we would like to show that the S matrix for our

proposal approaches Sid;2 in some limit. However, it is
sufficient for this to hold only for the particular states that

we are considering. Thus, to gauge the quality of our
operation, we use the average gate fidelity [32]

FðϕÞ ≔
Z

dψhψ jSidðϕÞ†Sactjψihψ jS†actSidðϕÞjψi ð2Þ

where the integration is taken over the Haar measure of the
joint Hilbert space (for further details, see the Supplemental
Material [33]). For our gate to be useful for quantum
computation, it suffices that F ¼ 1 − ϵ, where ϵ is some
constant threshold [35].
Single- and two-site gate fidelities.—We begin by exam-

ining F for wave packets scattering from a single site and
from two sites in a co- and counterpropagating arrangement.
The discrete Kerr interaction we consider is depicted in
Fig. 1(a). The unit cell we repeat in Fig. 1(b)—call it
G ¼ ðL;HÞ—can be described using LH [36–38] param-
eters from input-output theory, where L is a vector of
operators that couple the field to the system and H is the
systemHamiltonian. TheLH parameters for our unit cell are

G ¼
�� ffiffiffi

γ
p

A−
ffiffiffi
γ

p
B−

�

;
Δ
2
ð1 − AzÞ þ

Δ
2
ð1 − BzÞ

þ χð1 − AzÞð1 − BzÞ
�

; ð3Þ

where A− and Az are the atomic lowering and Pauli Z
operators for atom A, and likewise for B− and Bz. We

(a)

(b)

FIG. 1. (a) The physical system inside our unit cell. It consists
of two coupled two-level atoms, with internal energies Δ, and
which interact via H ¼ χð1 − AzÞð1 − BzÞ ¼ χj1; 1ih1; 1j. The
input-output fields couple to the atoms via the relation
aout ¼ ffiffiffi

γ
p

A− þ ain, and similarly for mode b. It was shown in
Ref. [28] that this system gives rise to the same S matrices for
single- and two-photon scattering as a pair of crossed cavities
with cross-Kerr interaction between them. In the limit χ → ∞,
this reduces to a three-level atom in a “V” configuration, such as
considered in Ref. [19]. (b) Our main proposal using N discrete
interaction sites with counterpropagating photons.
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cascadedN unit cells with co- and counterpropagating fields
and computed the corresponding S matrices, as detailed in
Ref. [28] and which we reproduce in the Supplemental
Material [33]. The final ingredient needed to calculate F is
thewave packet shape,whichwe choose to beGaussianwith
detuning ω0 (i.e., carrier frequency ωc ¼ Δþ ω0) and
bandwidth σ, i.e.,

ξðωÞ ¼ 1

ð2πσ2Þ1=4 exp
�

−
ðω − ωcÞ2

4σ2

�

: ð4Þ

In Fig. 2, left column, we display the plots for parameters
ðω0; γ; χÞ which maximize the fidelity of counterpropagat-
ing wave packets. Relative to the single site, we observe a
clear increase of the maximum obtainable fidelity when the
photons are counterpropagating, and a decrease when they
are copropagating, as illustrated in the top row. In the limit
of large χ and ω0 ¼ 0, the phase shift is always either 0 or
π, corresponding to the identity or CPHASE gate respectively
(see the bottom row). We observe that counterpropagating
wave packets tend to perform better than copropagating for
a large region of the parameter space, but there are
exceptions.
In Fig. 2, middle column, we display a parameter regime

where co-propagating photons obtain their maximum
fidelity and outperform the other two cases. The explan-
ation for this is the following. In this regime, the cop-
ropagating case seems to suffer more spectral
entanglement, but also acquire a larger phase shift, than
the other two (see the dashed lines), and the tradeoff
between these effects leads to a higher fidelity with the
CPHASE gate. However, these effects are linked in such a

way that this peak fidelity and the maximum phase are still
much inferior to the best obtained by the single-site and
counterpropagating cases in other parameter regimes.
Nonetheless, this suggests it is possible to use a perturba-
tive approach to construct long weakly coupled atom chains
where the rate at which phases and spectral entanglement
accumulate are more benign (e.g., [19]). It is also interest-
ing that the peak of the fidelity in the copropagating case
happens for larger σ than for the counterpropagating case in
all three columns, which could lead to a CPHASE gate for
spectrally broader photons.
In Fig. 2, right column, we display parameters that

maximize the single-site fidelity. As we generically expect,
the counterpropagating wave packets outperform the sin-
gle-site and copropagating ones both in fidelities and phase
shifts. This happens even when ω0 ≠ 0, indicating that our
conclusions are somewhat robust with respect to being off-
resonance.
N-site gate fidelities.—We now investigate the average

fidelity of our proposal to the CPHASE gate as we increase
the number of interaction sites. Based on observations from
the two-site case, we restrict our analysis to counter-
propagating photons, working on-resonance (ω0 ¼ 0),
and take a χ → ∞ limit because this yields the most
promising results. We also take γ ¼ 1, because choosing
other values effectively rescales σ when working on-
resonance. Thus, the average gate fidelity F is a function
of the number of interaction sites N and the photon
bandwidth σ: Fðσ; NÞ.
In Fig. 3(a) we plot the average gate fidelity, as a function

of σ, for increasing N. Notice that, as the number of
interaction sites increases, the maximum average fidelity
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0.1 1 10 100 0.1 1 10 100 0.1 1 10 100

FIG. 2. In the top row, solid lines represent the average gate fidelity with respect to the CPHASE gate, i.e., Fðϕ ¼ πÞ, while dashed lines
denote the fidelity FðϕÞ maximized with respect to some ϕ. The bottom row plots the corresponding phase shift ϕopt ¼ argmaxϕFðϕÞ.
We compare three cases of interest: (i) a single-site Kerr interaction (circles), (ii) a two-site interaction with copropagating photons
(squares), (iii) the two-site interaction with counterpropagation (stars). In the left column we have chosen ðω0; γ; χÞ ¼ ð0; 10; 10000Þ,
which maximizes F for the counterpropagating case, resulting in Fcounter ¼ 0.8628 (only for this case, whenever F ≳ 0.6, the dashed and
solid lines coincide). In the middle column we chose ðω0; γ; χÞ ¼ ð0; 6; 2.67Þ to maximize F for the copropagating case, obtaining
Fco-prop: ¼ 0.7326, and in the right column we chose ðω0; γ; χÞ ¼ ð1.1; 4.5; 5Þ to optimize the single-site F, obtaining Fsingle ¼ 0.7810.
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increases, indicating that the resulting operation is sequen-
tially closer to a CPHASE gate. Also notice that, in addition
to attaining higher maximum values, the fidelity curve is
also becoming broader (albeit in logarithmic scale). This
means that as the number of sites is increased, the proposed
CPHASE gate becomes more broadband, or robust with
respect to the spectral bandwidth of the photon. The highest
value for the fidelity in Fig. 3(a) is 0.996, when N ¼ 20.
In Fig. 3(b), we investigate the maximum of the average

fidelity Fmax and its corresponding value of σmax as a
function of N. We see that 1 − Fmax is monotonically
decreasing and σmax slowly tends towards the plane-wave
limit. For the observed behavior of Figs. 3(a)–3(b) we
predict that, in order to obtain Fmax ¼ 0.999, we would
need N ≃ 50 and σ ≃ 0.014s−1. Figure 3(b) also shows
that, for N > 5, the fidelity is not significantly affected by
using single-photon wave packets that have suffered one or
two rounds of deformation.
Another feature apparent in Fig. 3(a) is that, for fixed σ,

the advantage gained from increasing N eventually satu-
rates. This is explored further in Fig. 4. An intuitive
explanation is as follows: Interpret 1=γ as the typical time
scale before an excited atom reemits a photon; then,

tm ≈ N=γ is the time that each wave packet remains inside
the medium. Thus, if the wave packets have temporal width
of tw ≈ 1=σ, when N is roughly γ=σ the chain becomes
“long enough” to contain the entire wave packets, and the
interaction saturates.
Our results show that, to obtain higher-fidelity gates, one

has to move to smaller values of σ together with longer
atomic chains. In fact, in Ref. [28], we and Gea-Banacloche
have shown that, in the limit where σ → 0 and N → ∞,
the S matrix for the N-site case tends to the ideal one
(modulo single-photon deformation) S2ðωa;ωb; νa; νbÞ ¼
−Sact;1ðωa; νaÞSact;1ðωb; νbÞ. This is independent of the
specific wave packet shape, further motivating our choice
to ignore single-photon deformation. The results presented
here are more relevant for implementations, as one only
needs to increaseN and decrease σ until the fidelity surpasses
the threshold necessary for fault-tolerant computation.
Discussion.—Our goal was to determine if it is possible

to build a passive CPHASE gate using cross-Kerr inter-
actions, and we have shown that it is. Importantly, our
results do not contradict those of Ref. [14], which uses a
phenomenological model of a cross-Kerr medium. Using
that model, a CPHASE gate might indeed be unachievable.
However, our results are based on a fully multimode
treatment of the field and a fully microscopic treatment
of the interaction mediators. Thus, we believe they provide
a counterexample against the stronger claim, frequently
propagated the literature, that the multimode nature of the
field is a fundamental physical obstacle to implementing a
CPHASE gate. Furthermore, our proposal enjoys two advan-
tages over prior proposals. First, our gate is passive; i.e., it
does not require active error correction, such as the
principal mode projection technique used in Ref. [19].
Also, our proposal requires fewer interaction sites to
achieve a fixed fidelity; e.g., in Ref. [19] the authors
estimate they need 106 interaction sites for a 95% fidelity
with a CPHASE gate, whereas our proposal achieves that
value with 5 sites.
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FIG. 3. (a) Average gate fidelity between our proposal and the
CPHASE as a function of frequency bandwidth σ for increasing
number of interaction sites N. (b) We take the maximum of the
gate fidelity in (a), and plot the infidelity (1 − F) and the
corresponding maximizing σmax as functions of the number of
interaction sites N. Small red dots correspond to 1 − F for
photons that have undergone two rounds of single-photon
deformation. The dashed lines correspond to the fits 1 −
Fðσmax; NÞ ¼ 0.537N−1.61 and σmax ¼ 0.350N−0.81, where we
fit to N ∈ ½4; 20�.
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FIG. 4. Saturation of the average gate infidelity for fixed σ as
the number of interaction sites N increases. For illustration, we
choose the σ s that maximize the fidelity for specific numbers of
interaction sites n, i.e., σnmax ¼ argmaxσFðσ; nÞ where
n ¼ f2; 4; 6; 8; 10g. The lines then correspond to the fidelities
at σnmax for increasing N, i.e., Fðσnmax; NÞ. Finally, the black dots
in each curve correspond to N ¼ 1=σnmax, where we predict the
fidelity to saturate.
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Admittedly, our proposal is a proof-of-principle result that
will be challenging to construct in practice. Further, we hope
our constructionwill inspire others to devise simpler and less
resource-intensive proposals. There are plenty of avenues to
explore, e.g., placing the atomic interaction sites inside
cavities to gain a cavity enhancement [39], or varying the
atom parameters along the chain [40] while simultaneously
varying the input photon wave packet shape. Our analysis
did not include any additional imperfections, andwe leave as
future work the adaptation of our model to include other
effects such as losses, emission into nonguided modes,
coupling to a thermal bath, etc. In the SupplementalMaterial
[33]we propose an update to a set of rules initially laid out by
Gea-Banacloche [15] that must be satisfied by any theo-
retical proposal for a realistic CPHASE gate, based on
conclusions drawn from this Letter and [28].
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