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We use the class of commuting quantum computations known as IQP (instantaneous quantum
polynomial time) to strengthen the conjecture that quantum computers are hard to simulate classically.
We show that, if either of two plausible average-case hardness conjectures holds, then IQP computations
are hard to simulate classically up to constant additive error. One conjecture relates to the hardness of
estimating the complex-temperature partition function for random instances of the Ising model; the other
concerns approximating the number of zeroes of random low-degree polynomials. We observe that both
conjectures can be shown to be valid in the setting of worst-case complexity. We arrive at these conjectures
by deriving spin-based generalizations of the boson sampling problem that avoid the so-called permanent
anticoncentration conjecture.
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Quantum computers are conjectured to outperform
classical computers for a variety of important tasks ranging
from integer factorization [1] to the simulation of quantum
mechanics [2]. However, to date there is relatively little
rigorous evidence for this conjecture. It is well established
that quantum computers can yield an exponential advantage
in the query and communication complexity models.
But in the more physically meaningful model of time
complexity, there are currently no proven quantum-classical
separations.
This can be seen as a consequence of the extreme

difficulty of proving bounds on the power of classical
computing models, such as the famous P vs NP problem [to
determine whether every language accepted by some non-
deterministic algorithm in polynomial time is also accepted
by some (deterministic) algorithm in polynomial time].
Given this difficulty, the most we can reasonably hope for is
to show that quantum computations cannot be simulated
efficiently classically, assuming some widely believed
complexity-theoretic conjecture. For example, any set of
quantum circuits that can implement Shor’s algorithm [1]
provides a canonical example, with the unlikely conse-
quence of efficient classical simulation of this class of
quantum circuits being the existence of an efficient
classical factoring algorithm. However, one could hope
for the existence of other examples that have wider-reach-
ing complexity-theoretic consequences.
With this in mind, recently in both [3] and [4] sampling

problems were introduced as a method for potentially
proving that quantum computers cannot be classically
simulated, assuming the infinite tower of complexity
classes known as the Polynomial Hierarchy (PH) [5] does

not collapse—an assumption similar to P ≠ NP. In this
approach, a classical computer, or sampler, is tasked with
approximately mimicking the output of a quantum circuit.
That is, it must produce samples from the outputs of the
quantum circuit that occur with frequency that is approx-
imately correct. In [3] and [4], it was proven that there is no
efficient classical algorithm sampling from quantum cir-
cuits to within a small multiplicative approximation in each
output probability without a PH collapse.
Unfortunately, this notion of approximate sampling is

physically unrealistic, as the use of discrete gate sets and
the effects of noise induce additive errors on quantum
computers. As such, these results have little physical
meaning. It is more reasonable to allow the quantum
computer, and its corresponding classical simulator, to
sample from a distribution which is close to the desired
output distribution in total variation distance (equivalently,
the l1 distance).
One important step to addressing this was proposed by

Aaronson and Arkhipov in the same work [4], who gave a
sophisticated argument based on counting complexity that
approximately sampling from the output probability dis-
tribution of a randomly chosen network of noninteracting
photons (a problem known as boson sampling) should be
classically hard, even up to a reasonable total variation
distance. This major breakthrough rests on two tantalizing
but as yet unproven conjectures: the so-called permanent
anticoncentration conjecture and the permanent-of-
Gaussians conjecture.
In this Letter, we propose a generalization of the boson

sampling argument of [4] that is native to spin systems. We
prove that commuting circuits chosen at random from two
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well-motivated circuit families inside the class IQP (intro-
duced in [6] and [3]) cannot be classically sampled to
within a constant total variation distance, assuming no PH
collapse and the IQP equivalent of the permanent-of-
Gaussians conjecture. IQP circuits are simple enough to
allow us to prove the analogs of the permanent anticon-
centration conjecture, yet still retain the essential complex-
ity-theoretic ingredients.
Informally, an n-qubit IQP circuit C is a quantum circuit

which takes as input the state j0i⊗n, whose gates are
diagonal in the Pauli-X basis, and whose n-qubit output is
measured in the computational basis [3,6]. It is often
convenient to write C ¼ H⊗n ~CH⊗n, where ~C is diagonal
in the Pauli-Z basis and H is the usual Hadamard gate. The
classically hard IQP circuits in this Letter are relatively
simple to implement; see, e.g., Fig. 1 which corresponds to
an Ising model evolution. Implementations are further
discussed later in this Letter.
The plausible conjectures on which our work is based,

stated below, concern the complexity of computing approx-
imations, up to small relative error, of output probabilities
jh0j⊗nCj0i⊗nj2 of circuits C that are randomly chosen from
circuit families within IQP. We say that A approximates X
to within relative error η if jA − Xj ≤ ηX. One conjecture
has an interpretation native to computer science, the other
common in condensed-matter physics. Each concerns a
quantity whose approximation up to small relative error is
known to be hard to compute in the worst case; the
conjecture is that in fact it is just as hard on average.
Our main result states that if we assume either of our
conjectures, then there is no way of classically efficiently
sampling the outputs of the corresponding families of
quantum circuits without a major reevaluation of the
existing status quo of complexity theory. More formally,
Theorem 1. Assume either Conjecture 2 or 3 below

is true. If it is possible to classically sample from the
output probability distribution of any IQP circuit C in
polynomial time, up to an error of 1=192 in l1 norm,
then there is a BPPNP algorithm to solve any problem in
P#P. Hence, the Polynomial Hierarchy would collapse to
its third level.

The complexity class P#P appearing in this theorem is the
class of problems that can be solved in polynomial time
given the ability to count the number of solutions of
arbitrary NP problems [5]; BPPNP is the class of problems
that can be solved by randomized classical polynomial-time
computation equipped with an oracle that can solve any
problem in NP.
Our first conjecture is based on the complexity of one of

the most commonly studied models of statistical physics,
the Ising model. Consider the partition function

ZðωÞ ¼
X

z∈f�1gn
ω
P

i<j
wijzizjþ

P
n
k¼1

vkzk ; ð1Þ

where the exponentiated sum is over the complete graph
on n vertices, wij and vk are real edge and vertex weights,
and ω ∈ C. Then, for any ω ¼ eiθ, ZðωÞ arises straight-
forwardly as an amplitude of some IQP circuit CIðωÞ∶
h0j⊗nCIðωÞj0i⊗n ¼ ZðωÞ=2n (see Supplemental Material
[7] and [17–21]). For our purposes, it is sufficient to restrict
to the case where ω ¼ eiπ=8 and the weights are picked by
choosing uniformly at random from the set f0;…; 7g on
the vertices and edges of the complete graph on n vertices.
Our results would still apply for many other choices for ω
and distributions on the weights (for example, the edge
weights can be picked uniformly from f0;…; 3g), includ-
ing nonuniform distributions.
The diagonal component of the corresponding circuits

CIðeiπ=8Þ can be constructed from
ffiffiffiffiffiffiffi
CZ

p
[square root of

controlled Z, i.e., diagð1; 1; 1; iÞ], and T ¼
�
1 0

0 eiπ=4
�

gates, or alternatively by applying the Ising interaction
directly. The number of applications of each gate is given
by a simple function of the edge and vertex weights of the
associated graph in such a way that random edge weights
correspond to a random circuit [7]. See Fig. 1 for an
example. Let ZR denote partition functions associated with
the uniformly random choice of vertex and edge weights
from f0;…; 7g.
Conjecture 2. It is #P-hard to approximate jZRj2 up to

relative error 1=4þ oð1Þ for a 1=24 fraction of instances
over the choice of vertex and edge weights.
A problem is said to be #P-hard if it is at least as hard as

any problem in the complexity class #P [5]. It is known that
the family of partition functions ZðωÞ parametrized as
above is #P-hard to compute in the worst case up to the
above relative error bound [20,21]. Conjecture 2 thus states
that this worst-case hardness result can be improved to an
average-case hardness result.
Our second conjecture is based on the hardness of

computing the gap of degree-3 polynomials over F2,
f∶f0; 1gn → f0; 1g, which are expressible (up to an
additive constant) as

fðxÞ ¼
X

i;j;k

αijkxixjxk þ
X

i;j

βijxixj þ
X

i

γixi ðmod2Þ;

FIG. 1. An example of a randomly chosen circuit CI corre-
sponding to a 4-qubit Ising model instance such that
h0j⊗nCI j0i⊗n ¼ ZR=2n (up to trivial phase factors). Assuming
Conjecture 2 is true, if there exists a classically efficient algorithm
for sampling from the output of any such (n qubit) circuit to
within a constant additive error, then the Polynomial Hierarchy
collapses.
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where αijk, βij, γi ∈ f0; 1g. The gap is defined by
gapðfÞ≔jfx∶fðxÞ¼0gj−jfx∶fðxÞ¼1gj. It can be shown
that, for any degree-3 polynomial f, h0j⊗nCfj0i⊗n ¼
gapðfÞ=2n for IQP circuits Cf whose diagonal component
is constructed from Z, Controlled Z, and Controlled
Controlled Z gates for the degree 1–3 terms, respectively
(see [7]). We write ngapðfÞ ¼ gapðfÞ=2n. Then we have
the following conjecture:
Conjecture 3. Let f∶f0; 1gn → f0; 1g be a uniformly

random degree-3 polynomial over F2. Then it is #P-hard to
approximate ngap ðfÞ2 up to relative error 1=4þ oð1Þ for a
1=24 fraction of polynomials f.
It has been known for some time that ngap (f) is #P-hard

to compute exactly in the worst case [22]. We show in the
Supplemental Material [7], using IQP techniques, that this
worst-case hardness still holds for approximating ngapðfÞ2
up to relative error less than 1=2. Just as with Conjecture 2,
what remains is to lift this result to average-case hardness.
The precise values of the constants in Theorem 1 and the

aboveConjecturesareartifactsof theproof techniqueandcan
be traded-off against each other to some extent: a stronger
average-case hardness assumption implies a stronger bound
on the difficulty of simulating IQP circuits [7].
That the worst-case complexity of computing jZRj2 and

ngapðfÞ2 is #P-hard up to a constant relative error follows
from the fact that the associated gate sets CI and Cf would be
universal ifwecouldalsoperformHadamard (H) gates at any
point in the circuit—whichwe cannot do in IQP because this
gate does not commutewith theX gate.However, if we allow
the unphysical resource of postselection, these Hadamard
gates can effectively be implemented [3], allowing IQP
circuit amplitudes hyjCjxi to express any quantum circuit
amplitude (up to a known constant). See Supplemental
Material [7] for a description of this construction. This
construction also implies worst-case #P-hardness to within
exponentially small additive errors [19].
Proving the equivalence of average-case and worst-case

complexity is typically challenging, but achievable for
certain problems (see [7] for a discussion of this). For
example, in [4], there was a direct proof that exact evaluation
of boson sampling probabilities is hard on average. This was
based on average-case hardness results for computation of
the permanent, for which we do not know IQP analogs.
However, currently known techniques do not seem sufficient
to extend these exact hardness results for boson sampling to
approximate hardness results, leading to the permanent-of-
Gaussians conjecture [4, Sec. IX.2].
As with the case of boson sampling, the worst-case

hardness of approximations to both ZðωÞ and ngapðfÞ up to
small relative error implies via standard results on random-
self-reducibility [23] that there exists some distribution over
the choices of these functions that is #P-hard on average—
but not necessarily those required for Conjectures 2 and 3.
We believe that our conjectures should hold because there
is no structure to the random instances considered that
would enable a classical algorithm to solve them more

efficiently than in the worst case. In other contexts (such as
random k-SAT or k-satisfiability), there is strong empirical
evidence that random instances indeed seem to be hard
[24]. Note also our conjectures do not rely on the hard
random instances being picked from one particular dis-
tribution, but rather the density of hard instances.
Interestingly, recent independent work of Fefferman and

Umans [25] has explored an alternative generalization that
uses quantum fourier sampling to construct states whose
corresponding probability distributions are hard to sample
from classically, under similar conjectures to [4]. An
appealing aspect of the construction of [25] is that it shows
that there are specific, and rather simple, quantum states
which are hard to simulate classically, assuming an anti-
concentration conjecture holds. However, constructing
these states appears to require the full power of quantum
computation, unlike the results described here and in [4].
Proof intuition. There are a number of technical ingre-

dients of Theorem 1 which will be discussed below. The
basic idea is that, for the class of problems underlying
Conjectures 2 and 3, any classical IQP sampler that is
accurate up to a good additive error bound in the worst case,
is forced to also be accurate to within a reasonable relative
error on average. This observation is combined with a classic
result of complexity theory, the so-called Stockmeyer count-
ing algorithm ([26] and Supplemental Material [7]), which
can be used to estimate individual output probabilities of a
classical sampler up to small relative error.
We also use new anticoncentration results for ngapðfÞ

(for Conjecture 3) and the partition function of the random
Ising model (for Conjecture 2). That such anticoncentration
results can be proven is a consequence of the elegant
mathematical structures upon which IQP circuits are based.
Putting these observations together, we find that there is

an Function BPP ðFBPPÞNP algorithm for computing a
large fraction of jZRj2 and ngapðfÞ2 values up to small
relative error, where FBPP is the functional version of BPP.
Assuming the Conjectures 2 and 3, and that the Polynomial
Hierarchy does not collapse, this implies that randomly
chosen circuits from CI and Cf cannot be classically
simulated.
Approximation of general IQP circuits. We first prove a

key technical ingredient, which relates approximate sam-
pling from the output distributions of IQP circuits to
approximating individual output probabilities. This is essen-
tially the same argument as used in [4] for the permanent,
although we believe it becomes substantially simpler in the
setting of IQP. The intuition behind this result is that adding
random X gates to an IQP circuit randomly permutes the
output probabilities. This allows the user of a sampler which
is accurate for all circuits to obfuscate from the sampler
which one of the output probabilities the user is interested in.
Lemma 4. Let C be an arbitrary IQP circuit on n qubits.

Let Cx, for x ∈ f0; 1gn, be the circuit produced by
appending an X gate to C for each i such that xi ¼ 1.
Assume there exists a classical polynomial-time algorithm
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A which, for any IQP circuit C0, can sample from a
probability distribution which approximates the output
probability distribution of C0 up to additive error ϵ in l1

norm. Then, for any δ such that 0 < δ < 1, there is a
FBPPNP algorithm which, given access to A, approximates
jh0jCxj0ij2 up to additive error

O(ð1þ oð1Þ)ϵ=ð2nδÞ þ jh0jCxj0ij2=polyðnÞÞ
with probability at least 1 − δ (over the choice of x).
We prove Lemma 4 in the Supplemental Material [7]. If

jh0jCxj0ij2 ¼ Ωð2−nÞ, the algorithm of Lemma 4 gives a
good approximation—i.e., an approximation to relative
error within roughly OðϵÞ. We state this formally, and
calculate the precise constants involved, in [7]. We next
show that this condition is indeed satisfied for many circuits
picked from two interesting IQP families.
Anticoncentration bounds. Fix a family F of IQP

circuits. We would like to show that jh0jCj0ij2 is likely
to be high for a circuit C formed by picking a random circuit
D from F , then appending X gates on a uniformly random
subset S of the qubits. We will use the following fact:
Fact 5. (Paley-Zygmund inequality). If R is a non-

negative random variable with finite variance, then for
any 0 < α < 1, Pr½R ≥ αE½R�� ≥ ð1 − αÞ2E½R�2=E½R2�.
We will apply Fact 5 to the random variable

R ¼ jh0jCj0ij2, first observing that EC½jh0jCj0ij2� ¼
ED;x½jhxjDj0ij2� ¼ ð1=2nÞED

P
x∈f0;1gn jhxjDj0ij2 ¼ð1=2nÞ,

where in the second expectation x is picked uniformly
at random from f0; 1gn. This deals with the numerator;
to handle the denominator, we need to upper bound
E½jh0jCj0ij4�.
The first family of circuits we consider, Cf, corresponds

to polynomials over F2. We prove in the Supplemental
Material [7] that for uniformly random degree-3 polyno-
mials f, Ef½ngapðfÞ4� ≤ 3 × 2−2n. Based on this, and the
tight connection between IQP circuits over the gate set
fZ;CZ;CCZg and degree-3 polynomials, we have the
following result:
Theorem 6. Assume there exists a classical polynomial-

time algorithm A which, for any IQP circuit C, can sample
from a probability distribution which approximates the
output probability distribution of C up to additive error
1=192 in l1 norm. Then there is an FBPPNP algorithm
which, given access to A, approximates ngapðfÞ2 up to
relative error 1=4þ oð1Þ on at least a 1=24 fraction of
degree-3 polynomials f∶f0; 1gn → f0; 1g.
Proof.—Combining Fact 5 and the bound on

Ef½ngapðfÞ4�, we have Prf½ngapðfÞ2 ≥ α=2n�≥ ð1−αÞ2=3
for any 0 < α < 1. Fixing α ¼ 1=2, we get
Prf½ngapðfÞ2 ≥ 2−n−1�≥ 1=12. The claim then follows from
the discussion above (where the precise parameter values
stated in the theorem follow from Corollary 3 in [7]). ▪
We next consider the Ising model, where we are

interested in evaluating the partition function ZR for a
randomly weighted graph [see (1)]. Recall each edge of the
complete graph has a weight wij, and each vertex has a

weight vk, each picked uniformly at random from the
set f0;…; 7g.
We show in [7] that, up to an easily computed

global phase, h0jCIj0i ¼ ZR=2n for an IQP circuit CI
whose diagonal component is picked from the set
fdiagð1; 1; 1; iÞ; diagð1; eiπ=4Þg (up to trivial phase factors);
and further that we can consider a random circuit of this
form as being chosen by picking a random circuit using this
gate set, then following it by a random choice of X gates. In
addition, Ew;v½jZRj4� ≤ 3 × 22n. Via Fact 5 this implies the
following result, whose proof is essentially the same as that
of Theorem 6:
Theorem 7. Assume there exists a classical polynomial-

time algorithm A which, for any IQP circuit C, can sample
from a probability distribution which approximates the
output probability distribution of C up to additive error
1=192 in l1 norm. Then there is a FBPPNP algorithm
which, given access toA, approximates jZRj2 up to relative
error 1=4þ oð1Þ with probability at least 1=24 (over the
choice of weights).
Combining Theorems 6 and 7 gives Theorem 1.
Quantum supremacy and verification. We have argued

that the following “simple” IQP sampling algorithm should
be classically intractable: (1) preparing the computational
basis state j0i⊗n, (2) evolving by a circuit, or equivalent
Hamiltonian, randomly drawn from either CI (e.g., see
Fig. 1) or Cf, (3) measuring all n qubits in the computa-
tional basis, and (4) repeating (1)–(3) polynomially many
times. By “classically intractable”, we mean that if this
process can be demonstrated in the laboratory, if the total
effect of all errors can be demonstrated to remain con-
sistently below 1=192 (in l1 distance) even as the complex-
ity parameter increases, and if the resources (time) the
experiment takes can be argued to grow only polynomially
with the complexity parameter, then the process is actively
evidencing violation of the extended Church-Turing thesis.
In an IQP experiment that is designed to be hard to

simulate classically, the output distribution, while far from
the uniform distribution is still rather flat and exponentially
many measurement outcomes are possible. Similarly to the
case of boson sampling [27–29], this implies that verifying
that the experiment is working correctly becomes non-
trivial: “the task of establishing correct operation becomes
one of gathering sufficiently convincing circumstantial
evidence” [29]. Two natural experimental approaches
towards this are to verify the operation of each gate in
the circuit separately, lending confidence that the overall
circuit works correctly; or to simulate small experiments
classically, to build confidence in the experimental setup
before scaling up to classically intractable instances.
Verification is assisted by the fact that for IQP circuits,
it is always possible to classically estimate any k-local
correlation at the output of the circuit [3]. Recent work of
Hangleiter et al. [30] describes an approach to verify the
output of IQP circuits directly. Finally, previous work [6]
has demonstrated that there are classes of IQP circuits that
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admit interactive proof systems where a prover can con-
vince a verifier that he is running an IQP computation
versus a classical computation. However, there is no known
way of doing this for the random circuits in this Letter.
For both the Ising model (CI) and degree-3 polynomial

(Cf) case, implementation with commuting gates requires
nonlocal operations potentially between any 2 qubits in the
system, which is experimentally challenging. A more
viable near-term approach would be to instead implement
such circuits via a universal gate set, which would allow
implementations via nearest-neighbor gate sets. Likewise,
these circuits can also be implemented fault tolerantly via
standard constructions. It is also worth mentioning that
there has been significant experimental progress towards
implementation of classically difficult IQP circuits. The
dynamics of the Ising model with local interactions have
been digitally simulated in ion traps [31,32] and very
recently, nonlocal interactions have been utilized in the
digital simulation of fermionic systems with superconduc-
tors [33]. As technologies such as cavity buses for super-
conducting systems [34] become more reliable, we expect
that an increasing number of systems will be able to
implement IQP circuits in a regime that is likely not to
be classically simulable.
Outlook. Theoretically, there are a number of natural

questions that remain to be answered, the most obvious of
which is whether or not Conjectures 2 and 3 are true.
Recent breakthroughs [35–37] in categorizing the complex-
ity of statistical mechanical systems via the underlying
interaction graph properties give some hope that these
conjectures can be resolved. Extending the connections
used here between IQP, the Ising model, and low-degree
polynomials, to Tutte polynomials and weight enumerator
polynomials of binary linear codes [17] is also a compelling
direction to be explored.
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