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We show that a thermally isolated system driven across a quantum phase transition by a noisy control
field exhibits anti-Kibble-Zurek behavior, whereby slower driving results in higher excitations. We
characterize the density of excitations as a function of the ramping rate and the noise strength. The optimal
driving time to minimize excitations is shown to scale as a universal power law of the noise strength. Our
findings reveal the limitations of adiabatic protocols such as quantum annealing and demonstrate the
universality of the optimal ramping rate.
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Understanding adiabatic dynamics and its breakdown in
many-body systems is fundamental to the progress of
quantum technologies [1]. Adiabatic evolution is the
cornerstone of the quantum annealing scheme for state
preparation and quantum computation [2,3]. The adiabatic
theorem states that the dynamics of a physical system is
free from diabatic transitions under slow driving [4]. The
suppression of excitations becomes challenging in the
absence of an energy gap, e.g., when crossing a quantum
critical point (QCP) [5–7]. The density of excitation
follows a universal power law as a function of the rate
of change of the control field driving the system through the
QCP [8–11] and can be reduced by resorting to slow ramps.
This universal scaling is the key prediction of the Kibble-
Zurek mechanism (KZM), initially developed for classical
continuous phase transitions [12,13].
While its experimental verification still calls for further

studies [7], KZM is believed to be broadly applicable. Yet,
a conflicting observation has been reported in the study of
mutiferroic systems: approaching the adiabatic limit,
slower ramps generate more excitations [14]. This counter-
intuitive phenomenon was termed anti-Kibble-Zurek
(anti-KZ) dynamics. While tests of KZM in the quantum
regime are scarce, recent data hint at a possible anti-KZ
behavior [15,16]. Here we show that in a thermally isolated
quantum system, the presence of noisy fluctuations in the
control field naturally provides an explanation for anti-KZ
behavior.
We start by considering a linear passage through the

QCP. A control field g is turned on from zero value to unity
as in standard quantum annealing schemes, crossing a QCP
at gc ¼ 1

2
. When the transition is crossed at a rate 1=τ fixed

by the ramp duration τ, KZM predicts universal power-law
for the density of excitations n0 ∝ τ−β, with β¼dν=ð1þzνÞ,
where ν and z are the correlation length and dynamic
critical exponents, and d is the dimensionality of the

system. The subindex in n0 is introduced to denote
noise-free driving. The density of excitations monotoni-
cally decreases with τ and vanishes in the limit of τ → ∞.
The control over the system, however, is never perfect. In

particular, the modulation in time of the control field might
be subject to noise [17–21]. In our study, we consider a
thermally isolated system with no coupling to a thermal
environment or heat bath, discussed in Refs. [22–29].
While the dynamics is described by unitary evolution,
the external control field gðtÞ includes stochastic fluctua-
tions, as represented in Fig. 1.
Inspired by experimental protocols to test KZM [17–21],

we consider the average over the realizations of noise and
derive an exact master equation for the effectively open
quantum many-body dynamics. As a result, the annealing
dynamics is characterized by the interplay of two compet-
ing effects: (i) the approach to the adiabatic limit resulting
from the universal suppression of diabatic excitations
predicted by KZM and (ii) the accumulation of noise-
induced excitations during the evolution. By a numerically

FIG. 1. Schematic driving through a QCP with a noisy control
field. Under an idealized smooth control field gðtÞ, diabatic
transitions are suppressed as the ramp time τ is increased, as
dictated by the KZM. The presence of noise in the control field
gðtÞ gives rise to anti-KZ behavior, limiting the performance of
adiabatic protocols.
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exact approach, we show that for large values of the ramp
time τ, noise contributions dominate the dynamics and give
rise to anti-KZ behavior. An important consequence for
quantum annealing is the emergence of a finite optimal
ramp time τopt for the process. The density of excitations
can be reduced by increasing the ramp time up to this
optimal value τopt, beyond which excitations accumulate,
heating up the system. Explicitly, we argue that in the limit
of small noise and finite time τ, the noise-averaged density
of excitations nW upon the completion of the annealing
protocol is given by

nW ≈ rτ þ cτ−β; ð1Þ

where β is the universal KZM exponent, c is a nonuniversal
(dimensionful) prefactor, and r is the rate at which the
presence of noise in the control field generates excitations.
The effective decoupling of the KZM dynamics from noise-
induced effects leads to the additive form of Eq. (1). The
(total) density of excitations nW is minimized when ramp
time is chosen to be

τopt ∝ r−1=ðβþ1Þ: ð2Þ

Furthermore, r ¼ Λ2W2, where W2 characterizes the
strength of the noise (in units of time) and Λ sets the
energy scale of the Hamiltonian.
We verify our prediction by explicit calculations in the

transverse-field Ising model. This exactly solvable model
has been an important testbed for the quantum KZM
[5–7,9–11]. The Hamiltonian of the model is

H ¼ −
XN

n¼1

ðBσ̂xn þ Jσ̂znσ̂
z
nþ1Þ; ð3Þ

where for simplicity we assume periodic boundary con-
dition and an even number of spins N. This system exhibits
a quantum phase transition at J ¼ B between a para-
magnetic phase (B > J) and a doubly degenerate ferro-
magnetic phase (B < J). The model is of relevance to
condensed matter systems [30] and can be realized in
quantum simulators [31,32]. Its quantum critical dynamics
has recently been used in the laboratory to test the KZM in
the quantum regime [21,33]. The density of excitations
generated by changing the ratio B=J ¼ t=τQ in a time scale
τQ matches the KZM prediction n0 ∼ 1= ffiffiffiffiffi

τQ
p correspond-

ing to d ¼ ν ¼ z ¼ 1, which leads to β ¼ 1=2 [9–11].
We consider the crossing of the QCP from the para-

magnetic to the ferromagnetic phase of model (3), follow-
ing a quantum annealing scheme [2]. The time-dependent
Hamiltonian is

H ¼ −Λ
XN

n¼1

f½1 − gðtÞ�σ̂xn þ gðtÞσ̂znσ̂znþ1g; ð4Þ

where g ¼ 0 (g ¼ 1) corresponds to the perfect paramagnet
(ferromagnet) with a vanishing exchange coupling (mag-
netic field) and the QCP is at gc ¼ 1

2
. Starting from the

paramagnet with gð0Þ ¼ 0, the control field gðtÞ is varied to
prepare the ground state at gðτÞ ¼ 1. Hereafter, we set the
energy scale Λ to unity. In an adiabatic protocol, the
paramagnetic phase is prepared free from excitations. To
account for the finite-time annealing dynamics generated
by a noisy control field gðtÞ, we consider a prescheduled
linear ramp

g0ðtÞ ¼ t=τ; ð5Þ

in the presence of a stochastic perturbation γ,

gðtÞ ¼ g0ðtÞ þ γðtÞ; 0 < t < τ; ð6Þ

where γ is a Gaussian white noise with zero mean and the
second moment hγðtÞγðt0Þi ¼ W2δðt − t0Þ. Here W charac-
terizes the strength of the noise (note that γ is dimensionless
and W2 has units of time). White noise is a good
approximation to ubiquitous colored noise with exponen-
tially decaying correlations such as the Ornstein-Uhlenbeck
process [34,35]. While our quantitative predictions may
change for power-law correlated noise, we expect the slow
decay of the noise spectrum (in the frequency domain) to
allow for absorption of energy from the noisy drive and the
aforementioned competition between adiabaticity and heat-
ing, qualitatively leading to the same anti-KZ behavior.
The linear ramp g0ðtÞ of Eq. (5) captures the physics of

more general protocols that can be effectively linearized in
the vicinity of the QCP, motivating this commonly used
choice. In particular, the annealing dynamics is directly
related to the protocols considered in studies of the KZM,
where only one coupling constant (e.g., B=J) is varied to
traverse the critical point at gc ¼ 1=2 in Eq. (4). Neglecting
the noise, the linear protocol (5) crosses the QCP at
δt≡ t − τ=2 ¼ 0. Expanding in δt gives BðδtÞ=JðδtÞ ¼
ðτ − 2δtÞ=ðτ þ 2δtÞ ¼ 1 − 4δt=τ þOðδt2=τ2Þ. As a result,
for δt=τ ≪ 1 the ramp time τ is proportional to the quench
time τQ [10] via τQ ¼ τ=4. Thus, forW ¼ 0, we expect the
dynamics above to generate an excitation density propor-
tional to 1=

ffiffiffi
τ

p
.

In what follows, we focus on the dynamics generated by
Eqs. (4), (5), and (6). First we make use of Novikov’s
theorem [36] to show that the noise-average density matrix
obeys an effectively open quantum dynamics described by
a Lindblad-type master equation. To this end we separate
the deterministic and stochastic parts of the time-dependent
noisy Hamiltonian

HðtÞ ¼ H0ðtÞ þ γðtÞV; ð7Þ

where from Eq. (4) we find
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H0ðtÞ ¼ −
XN

n¼1

f½1 − g0ðtÞ�σ̂xn þ g0ðtÞσ̂znσ̂znþ1g; ð8Þ

V ¼ −
XN

n¼1

ð−σ̂xn þ σ̂znσ̂
z
nþ1Þ: ð9Þ

For each realization of noise γðtÞ, assuming we start from a
pure state jψð0Þi, the time evolution is governed by a
stochastic Schrödinger equation,

i
d
dt

jψðtÞi ¼ ½H0ðtÞ þ γðtÞV�jψðtÞi: ð10Þ

It is possible for the system to decohere at long times of
evolution, violating the assumption of unitarity for each
realization of noise. As we are interested in the limit of
small noise in systems with high thermal isolation, the fate
of the system for t ≥ τopt does not affect our prediction of
the anti-KZ behavior and the scaling (2) for τopt.
As shown in Ref. [37] using Novikov’s theorem [36] (see

also Refs. [41,46]), Eq. (10) unravels the following non-
perturbative exact master equation for the noise-averaged
density matrix ρðtÞ,

d
dt

ρðtÞ ¼ −i½H0ðtÞ; ρðtÞ� −
W2

2
½V; ½V; ρðtÞ��: ð11Þ

The first term in the right-hand side accounts for the unitary
evolution generated by the prescheduled Hamiltonian
H0ðtÞ. The second one induces an effectively open quan-
tum dynamics [47] with Hermitian bath operators V that
include both one- and two-body spin interactions;
see Eq. (9).
We next use a Jordan-Wigner transformation to write

the stochastic Hamiltonian in terms of free fermions
as [10]

H ¼ −
XN

n¼1

fgðtÞc†ncnþ1 þ gðtÞcnþ1cn − ½1 − gðtÞ�c†ncn

þ H:c:g;

where cn are fermionic annihilation operators and we have
dropped an irrelevant time-dependent real function. We
note that (12) commutes with the fermion parity operator
for each noise realization, i.e., ½HðtÞ; P� ¼ 0, where
P ¼ Q

nð1 − 2c†ncnÞ. We work in the even parity subspace
where boundary condition are antiperiodic, i.e., cNþ1¼−c1.
Using a Fourier transformation cn ¼ e−iπ=4

P
kcke

ikn=
ffiffiffiffi
N

p
with k ¼ �ð2m − 1Þðπ=NÞ for m ¼ 1; 2;…; N=2, we find

HðtÞ ¼ 2
X

k>0

Ψ†
kfσz½1− gðtÞ− gðtÞ cosk� þ σxgðtÞ sinkgΨk;

ð12Þ

where Ψ†
k ≡ ðc†k; c−kÞ. The Pauli matrices used in writing

the above Hamiltonian in momentum space are not to be
confused with the original spin operators indicated by σ̂x;y;zn .
Both H0ðtÞ and V can then be written in the form

H0ðtÞ ¼
X

k>0

Ψ†
k½σzhzkðtÞ þ σxhxkðtÞ�Ψk; ð13Þ

V ¼
X

k>0

Ψ†
k½σzvzk þ σxvxk�Ψk; ð14Þ

with hzkðtÞ¼2½1−g0ðtÞ−g0ðtÞcosk�, hxkðtÞ ¼ 2g0ðtÞ sin k,
vzk ¼ −2ð1þ cos kÞ, vxk ¼ 2 sin k. The initial state is taken
to be the ground state of the Hamiltonian (12) for g ¼ 0,
which is simply given by jψð0Þi ¼⊗k>0 j0ik, where j0ik is
the vacuum in one sector of the block-diagonal
Hamiltonian (each positive momentum k is only coupled
to −k). The noise-averaged density matrix ρðtÞ can be
computed by solving equation of motion (11) with the
initial condition ρð0Þ ¼ jψð0Þihψð0Þj. We neglect the terms
in the master equation that couple different modes so the
solution retains a tensor-product form ρðtÞ ¼⊗k>0 ϱkðtÞ.
As argued in Ref. [29], this approximate density matrix
yields exact noise-averaged expectation values for quad-
ratic operators with translation symmetry such as Eqs. (16)
and (17) [48]. Our results for the quartic operator (18),
however, are approximate. Fermion parity is conserved in
each sector and the corresponding initial state j0ik has even
parity. Thus, the single-mode Hilbert space is spanned by
the pseudospins j↑ik ¼ c†kc

†
−kj0ik and j↓ik ¼ j0ik (for any

2 × 2 matrix O, the quadratic operator Ψ†
kOΨk in the

above basis is given by the matrix O). The k-mode density
matrix ϱkðtÞ can then be represented as a two-dimensional
matrix in the above basis, whose evolution is dictated by
the master equation

d
dt

ϱkðtÞ ¼ −i½σzhzkðtÞ þ σxhxkðtÞ; ϱkðtÞ�

−
W2

2
½σzvzk þ σxvxk; ½σzvzk þ σxvxk; ϱkðtÞ��: ð15Þ

The dissipative part induces dephasing in each mode along
the x and z directions and contains as well mixed xz and zx
terms. We resort to the numerical solution of this set of
master equations and characterize the nonadiabatic open
dynamics in terms of three different observables. The
density of excitations is given by

nW ¼ 1 −
1

N

X

k>0

hGkðτÞjϱkðtÞjGkðτÞi; ð16Þ

where jGkðτÞi is the k-sector ground state. Further, we
compute the mean excess energy of the final state over the
corresponding ground state:

Q ¼ fTr½ρðτÞHðτÞ� − hGðτÞjHðτÞjGðτÞig=N: ð17Þ
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This so-called residual energy density is known to scale
universally for W ¼ 0 as a function of the ramp time in a
KZM quench [49]. Finally, the energy spread of the final
state [34,50]

ΔE ¼ fTr½ρðτÞH2ðτÞ� − Tr½ρðτÞHðτÞ�2g1=2=N ð18Þ

per particle is obtained in a similar manner. For numerical
simulations we choose the system size N ¼ 1024 for which
there are no important finite-size effects and a range of
values for the ramp time where universal KZM scaling is
observed for W ¼ 0.
The dependence of the density of excitations nW on the

ramp time τ is shown in Fig. 2(a) for several values of the
noise strengthW. For short ramp times τ, the effect of noise
in the control field is negligible and the density of
excitations scales as a power law in agreement with the
KZM prediction, nW ∝ τ−1=2. For longer ramp times, noise-
induced effects dominate the nonadiabatic dynamics, lead-
ing to the growth of nW with the ramp time τ (for fixedW).
This is the anti-KZ regime, where decreasing the annealing
rate 1=τ results in a higher excitation of the system. In the
limit of very long times, nW is completely governed by the
anti-KZ contribution and approaches 1=2, as confirmed by
the analytical estimate derived in Ref. [37].
The interplay between the approach to adiabaticity and

the accumulation of noise-induced excitations also appears

in other observables, including the residual mean energyQ.
For W ¼ 0, Q scales as the density of defects in our model
and for W2 > 0 an analogous anti-KZ regime is observed
after surpassing an optimal ramp time [see Fig 2(b)]. The
optimal time does depend on the observable. In particular,
energy fluctuations exhibit the anti-KZ behavior at earlier
stages of the dynamics, as shown in Fig 2(c). We can define
the difference between the number of excitations generated
in the presence and absence of noise (with strength W),
δnW ¼ nW − n0. The data in Fig 2(d) confirm that for
moderate ramp times and small values of Wm noise-
induced generation of excitations is well characterized
by a heating rate r, supporting Eq. (1). In this regime,
the excess of excitations exhibits a linear growth δnW ≃ rτ.
Deviations from it as a function of the ramp time are
expected and observed for longer ramps.
We next demonstrate the validity of the scaling ansatz (1)

relating the optimal ramp time to the noise strength. The
heating rate is set by the amplitude of the noise fluctuations
W2 as seen in Fig. 3. Ultimately, this scaling is dictated by
the quantum speed limits for open systems [51,52].
Minimizing the density of excitations as a function of the
ramp time for different noise strengths, we determine the
scaling of the optimal ramp time onW. A linear fit to the data
shows that the density of excitations is minimized when the
ramp time is τopt ¼ aðW2Þb with a ¼ 0.193� 0.003 and
b ¼ −0.669� 0.004 in excellent agreement with the theo-
retical prediction τopt ∝ ðW2Þ−2=3, e.g., following Eq. (2).
This sets an upper limit to the ramp time in quantum
annealing protocols, above which anti-KZ behavior domi-
nates, and the density of excitations increases with the
ramp time.
In conclusion, we have provided a natural mechanism to

explain the anti-Kibble-Zurek behavior in the quantum
critical dynamics of a thermally isolated system driven by a
noisy control fields. Our results show the limits to adiabatic

(a) (b)

(c) (d)

FIG. 2. Anti-Kibble-Zurek behavior induced by a noisy control
field. (a) The density of excitations upon completion of the
annealing schedule for different values ofW as a function of ramp
time τ. The numerically exact value surpasses the power-law
scaling predicted by the KZM when W2 > 0. (b) A similar
dependence is observed in the residual energy density Q.
(c) Noise-induced effects are more pronounced in the energy
spread ΔE and already manifested for short ramp times. (d) The
difference between the density of excitations generated in the
presence and absence of noise scales linearly as a function of
ramp time τ for fast ramps with W2τ < 1, at a characteristic
heating rate. Deviations are noticeable for long ramps.

FIG. 3. Universal scaling of the optimal annealing time. The
scaling of the optimal annealing time τopt that minimizes
the density of excitations as a function of heating rate r, verifies
the universal prediction in Eq. (2). Inset: The heating rate r is
shown to scale linearly as a function of square of the strength
of noise W2.
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strategies in quantum annealing and indicate that the optical
annealing time follows a universal scaling law as a function
of the amplitude of the noise fluctuations.
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