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Quantum discord expresses a fundamental nonclassicality of correlations that is more general than
entanglement, but that, in its standard definition, is not easily evaluated. We derive a hierarchy of
computationally efficient lower bounds to the standard quantum discord. Every nontrivial element of the
hierarchy constitutes by itself a valid discordlike measure, based on a fundamental feature of quantum
correlations: their lack of shareability. Our approach emphasizes how the difference between entanglement
and discord depends on whether shareability is intended as a static property or as a dynamical process.
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Correlations in quantum mechanics exhibit nonclassical
features that include nonlocality [1], steering [2], entangle-
ment [3], and quantum discord [4], and that play a
fundamental role in quantum information processing and
quantum technologies [5], from quantum cryptography [6]
to quantum metrology [7]. While both nonlocality and
steering are manifestations of entanglement, quantum
discord is a more general form of quantumness of corre-
lations that includes entanglement but goes beyond it. In
fact, almost all distributed quantum states, including
unentangled ones, exhibit discord [8]. The ubiquitousness
of discord constitutes a motivation to understand it as much
as possible—including its relation with entanglement—and
also a call to fully elevate its study to an operational and
quantitative level, since just certifying its presence may be
considered of limited interest.
While several approaches to the quantification of discord

have been proposed (see, e.g., [4,9–22] and references
therein), in this Letter we push forward a meaningful,
reliable, and computationally friendly quantitative
approach to the study of discord. Conceptually speaking,
our approach offers a unifying way to understand both
entanglement and discord in terms of shareability of
correlations: entanglement is characterized by the impos-
sibility of sharing correlations even in a static fashion [23];
discord is instead related to the impossibility of freely
redistributing correlations—a dynamical perspective. A
unified view of quantum correlations based on a general
notion of shareability is relevant in several contexts that
deal with the distribution of quantum states: in quantum
information processing, particularly in quantum cryptog-
raphy [24,25] and entanglement distribution [26,27]; in
quantum foundations, particularly in the study of the
classical-to-quantum transition [28,29]; in condensed-
matter physics and quantum chemistry, particularly in
relation to frustration phenomena [30–33] and to the
quantum marginal problem [34,35].

Quantum discord was introduced as the minimum
amount of correlations, as measured by mutual informa-
tion, that is necessarily lost in a local measurement of a
bipartite quantum state [36,37]. It is not easily evaluated
[38,39], and even general computable lower bounds are
not known. In this Letter we provide a hierarchy of lower
bounds to quantum discord that can be reliably computed
numerically, and that have physical meaning, since they are
based on “impossibility features” related to the local
manipulation of quantum correlations. Furthermore, our
bounds satisfy the basic requests that should be imposed on
any reasonable measure of quantum correlations [40,41];
hence, they are valid discordlike quantifiers themselves.
One impossibility feature associated to quantum discord

relates to local broadcasting [42,43]: correlations that
exhibit quantum discord cannot be freely locally redistrib-
uted or broadcast, and discord can be interpreted as the
asymptotic loss in correlations necessarily associated with
such an attempt [29,44]. A very related impossibility
feature of discord deals with the “local relocation” of
quantum states by classical means, that is, via classical
communication. The relation between the above two
impossibility features is given by the fact that quantum
information becomes classical when broadcast to many
parties [29,45–47]. Besides their foundational interest, such
features limit, for example, what a malicious eavesdropper
can do in quantum cryptography [48,49].
A result by Petz [50–52] implies that the ability to

perfectly locally broadcast or transmit by classical means
distributed quantum states reduces to the ability to perfectly
locally broadcast or classically transmit correlations, as
measured by mutual information [42,43,53], a feat
possible—by definition—only in the absence of discord.
The consideration of the approximate classical transmis-
sion of an arbitrary quantum state, possibly exhibiting
discord, has recently received renewed attention also thanks
to a breakthrough result of Fawzi and Renner [54] (see also
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[55–58]) that generalizes the result by Petz. In [22] a
discordlike quantifier was introduced, the surprisal of
measurement recoverability; it quantifies how well—in
terms of quantum fidelity—a distributed quantum state
can be locally transmitted by classical means, and, thanks
to [54], it directly translates into a lower bound to the
standard quantum discord. Unfortunately, it is not easily
computable either. In this Letter, by considering how well a
quantum state can be locally broadcast, we generalize the
surprisal of measurement recoverability to obtain a hier-
archy of numerically computable bounds converging to it.
The hierarchy exploits ideas used in the characterization
and detection of entanglement via semidefinite program-
ming (SDP) [59–61]. SDP optimization techniques [62]
have found many other applications in quantum informa-
tion (see, e.g., [63–69]), and recently have been used in the
quantification of steering [70,71]. Here we extend the
use of SDP techniques for the study of quantum correla-
tions to quantum discord. This could be considered
surprising, because the set of nondiscordant states is not
convex, contrary to, for example, the set of unentangled
states. The key point is that our operational approach
focuses on the local manipulation of correlations, rather
than on their direct description, and we consider constraints
on such a manipulation that are amenable to an SDP
characterization.
Preliminaries.—We consider finite-dimensional sys-

tems. A quantum state corresponds to a positive semi-
definite density matrix ρ belonging to the space LðHÞ of
linear operators on a Hilbert space H. The von Neumann
entropy of ρ is SðρÞ ¼ −Trðρ log ρÞ. We indicate by TrnX a
trace performed over every system except X, and
log≡log2. For the global state ρ of a bi- or multipartite
system, we denote SðXÞρ ¼ SðρXÞ, where LðHXÞ∋ρX ¼
TrnXðρÞ is the reduced state of system X. The fidelity
Fðσ; ρÞ ¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

ρ
p

σ
ffiffiffi

ρ
pp

quantifies how similar two states ρ
and σ are [5]. It holds 0 ≤ Fðσ; ρÞ ≤ 1, with Fðσ; ρÞ ¼ 1 if
and only if ρ ¼ σ. In our analysis it is important that the
fidelity corresponds to the SDP optimization [72,73],

maximize
1

2
½TrðXÞ þ TrðX†Þ�; ð1aÞ

subject to

�

ρ X

X† σ

�

≥ 0: ð1bÞ

Physical transformations are described by completely
positive trace-preserving linear maps—also called
channels—on operators [5].
Separability and symmetric extensions.—A bipartite

state ρAB is separable (or unentangled) if it admits the
decomposition

ρsepAB ¼
X

b

pbjαbihαbjA ⊗ jβbihβbjB; ð2Þ

for fpbg a probability distribution, and jαbiA and jβbiB
vector states for A and B, respectively. The correlations
present in a separable state can be explained classically,
although they may exhibit a quantum behavior, as we see.
A bipartite state that is not separable is deemed entangled
[74], and requires quantum communication or interaction to
be generated.
Let Bk ¼ B1B2…Bk, with B≃ B1 ≃ B2 ≃…≃ Bk; i.e.,

the Bi systems are “copies” of the B system. We say that
ρABk is a k-symmetric extension of ρAB (on B) if
(i) TrnABi

ðρABkÞ ≕ ρABi
¼ ρAB, for all i ¼ 1;…; k;

(ii) ρABk ¼ VρABkV† for any unitary V that permutes the
Bk systems. Because of the symmetry (ii), in (i) it is enough
to consider just one specific index i, e.g., i ¼ 1. If (i) and
(ii) hold, it means the system A can simultaneously share
the same bipartite state ρAB with k different systems
that are copies of B. If the stronger condition,
(ii’) ρABk ¼ Πþ

BkρABkΠþ
Bk , with Πþ

Bk being the projector onto
the fully symmetric subspace Bkþ of Bk, holds, we say that
ρABk is a k-Bose-symmetric extension of ρAB (on B).
A very important result in the study of quantum

correlations is that only separable states like (2) admit k-
symmetric extensions for all k [61,75,76].
No local broadcasting.—The no-local-broadcasting

theorem [42,43] states that there exists a broadcasting
channel ΛB→B1B2

such that ΛB→B1B2
½ρAB� is a two-

symmetric copy of ρAB if and only if ρAB is quantum-
classical (QC), i.e., of the form

ρQCAB ¼
X

b

pbρ
A
b ⊗ jbihbjB; ð3Þ

with fjbig being an orthonormal basis, and fpbg a
probability distribution [77]. We notice that quantum-
classical states form a strict subclass of the separable states
(2); this means that, while the correlations of separable
states can be explained in classical terms, their behavior can
be—an in general is—nonclassical.
If local broadcasting is possible, then it can be realized

with a symmetric broadcasting channel, whose output is
symmetric. More precisely, an arbitrary number k of
extensions can be obtained, simply by jbi ↦ jbi⊗k, for
jbi as in (3), i.e., with output in Bkþ (see Fig. 1). Consider
then Bose-symmetric broadcast maps ΛB→Bk

þ
, with output

in the fully symmetric subspace, and the induced maps

ΛSymþðkÞ
B ¼ TrnB1

∘ΛB→Bk
þ
on B, where ∘ denotes composi-

tion. We say that any map ΛSymþðkÞ
B that admits such a

representation is k-Bose-symmetric extendible.
A measure-and-prepare channel—also called entangle-

ment breaking (EB)—acts according to [78] ΛEB
B ½·� ¼

P

yTrðMB
y ·ÞjβyihβyjB, where fMB

y g is a positive-
operator-valued measure (POVM) associated to a
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measurement, and the jβyiB’s are normalized vector states,
associated to a y-dependent preparation. As the name
suggests, entanglement-breaking maps are such that
ðidA ⊗ ΛEB

B Þ½ρAB� is separable for any ρAB.

For any k-Bose-symmetric extendible ΛSymþðkÞ
B there is

an entanglement-breaking map ΛEB
B close to it [47,79]. On

the other hand, any entanglement-breaking map is k-Bose-
symmetric extendible, for any k, since we can consider
ΛB→Bk

þ
½·� ¼ P

yTrðMB
y ·Þðjβyihβyj⊗kÞBk

þ
. One can then

argue that the class of k-symmetric extendible channels,
which we denote LSymþðkÞ, converges to the set of entan-
glement-breaking channels, which we denote LEB, for
k → ∞ [47,79].
Mutual information, recoverability, and discord.—The

mutual information

IðA∶BÞρ ¼ SðAÞρ þ SðBÞρ − SðABÞρ
is a fundamental measure of the total correlations present
between A and B [5,84,85]. The conditional mutual
information is defined as [5]

IðA∶BjCÞρ ¼ IðA∶BCÞρ − IðA∶CÞρ;

i.e., it quantifies the decrease of correlations due to the loss
of B. The strong subadditivity of the von Neumann entropy
[86] says that IðA∶BjCÞρ ≥ 0. A state ρ ¼ ρABC such that
IðA∶BjCÞρ ¼ 0 is said to form a Markov chain. Indeed, a
result by Petz [50–52] ensures that there exists a “recovery
channel”RC→BC such that ρABC ¼ RC→BC½ρAC�. Fawzi and
Renner proved [54] that, more in general, for any tripartite
state ρABC, there exists a recovery channelRC→BC such that
(see also [55–58])

FðRC→BC½ρAC�; ρABCÞ ≥ 2−
1
2
IðA∶BjCÞρ ; ð4Þ

that is, the smaller the decrease of correlations due to the
loss of B, the better, in fidelity terms, ρABC can be recovered
from operating on C alone.

The discord DðA∶BÞρ of ρ ¼ ρAB between A and B with
the measurement on B is the minimal loss of correlations
that occurs when B is measured. Let MB→Y ½·� ¼
P

yTrðMB
y ·ÞjyihyjY be a generic measurement map, where

fMyg is a POVM, and fjyig is an orthonormal basis.
Then [36,37]

DðA∶BÞρ ≔ min
MB→Y

½IðA∶BÞρ − IðA∶YÞMB→Y ½ρ��:

Discord vanishes only for the quantum-classical states (3)
[43,53]. Like any other channel, a measurement map can be
seen as the result of the coherent interaction with an
environment, followed by the tracing out of some sub-
system [5], a loss that one can try to “undo” via a recovery
channel. In the case of a (local) measurement, the recovery
corresponds to a preparation, and the combination of
measurement and recovery is an entanglement-breaking
map ΛEB [22]. Thus, putting together the result (4) of Fawzi
and Renner with the defining notion of discord, one arrives
at [22]

sup
ΛEB∈LEB

FðΛEB
B ½ρAB�; ρABÞ ≥ 2−

1
2
DðA∶BÞ: ð5Þ

Defining the surprisal of measurement recoverability
[22],

DF;LEBðA∶BÞ ≔ − log sup
ΛEB∈LEB

F2ðΛEB
B ½ρAB�; ρABÞ;

one can cast (5) as DF;LEBðA∶BÞ ≤ DðA∶BÞ. The quantity
DF;LEBðA∶BÞ measures the inevitable disturbance intro-
duced by manipulating locally (on B) the state ρAB, through
measurement and (re-)preparation. This can be generalized
to any nontrivial (local) manipulation (see also [20]); i.e.,
one can consider

DF;LðA∶BÞ ≔ − log sup
Λ∈L

F2ðΛB½ρAB�; ρABÞ;

for a generic class of channels L. This corresponds to
quantifying the best fidelity that can be achieved in the
transmission of the B component of ρAB, through a channel
that belongs to L. If LEB⊆L, it necessarily holds
DF;LðA∶BÞ ≤ DF;LEBðA∶BÞ ≤ DðA∶BÞ. In this Letter we
focus on L ¼ LSymþðkÞ, that is, we consider the disturbance
induced by channels that admit k extensions. Equivalently,
we can say we are considering how well one can broadcast
the B component of ρAB to k receivers, which is a relevant
problem in quantum communication and in quantum
cryptography, as this kind of “symmetric cloning” (par-
ticularly for k ¼ 2) is a typical attack that an eavesdropper
can perform [48,49]. Since LEB⊆LSymþðkÞ, it follows that

DF;LSymþðkÞ ðA∶BÞ ≤ DF;LEBðA∶BÞ ≤ DðA∶BÞ; ð6Þ

FIG. 1. Symmetric local broadcasting. A Bose-k-symmetric
broadcasting channel ΛB→Bk

þ
has output in the fully sym-

metric subspace of Bk ¼ B1B2…Bk. How well ρAB1
¼

TrnAB1
ðΛB→Bk

þ
½ρAB�Þ can approximate ρAB depends on the

classicality of correlations in ρAB.
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for all k ≥ 2. Furthermore, one proves [79]
limk→∞DF;LSymþðkÞ ðA∶BÞ ¼ DF;LEBðA∶BÞ.
An SDP hierarchy of discordlike measures.—The

Choi-Jamiołkowski isomorphism [87,88] is a one-to-
one correspondence between linear maps and linear
operators. Through the isomorphism, specific properties
of the linear maps are associated with specific properties of
linear operators. The computation of the surprisal of
measurement recoverability requires a difficult optimiza-
tion over entanglement-breaking channels. Relaxing the
problem, we maximize the fidelity between ρ ¼ ρAB and

σ ¼ ½idA ⊗ ΛSymþðkÞ
B �½ρAB�, where ΛSymþðkÞ

B is a k-Bose-
symmetric extendible map. Using the Choi-Jamiolkowski
isomorphism and the SDP expression of the fidelity (1), this
can be cast as the SDP optimization [79],

max
1

2
½TrðXÞ þ TrðX†Þ�; ð7aÞ

s.t.

� ρAB X

X† TrnAB1
ðWΓB

BBkρABÞ
�

≥ 0; ð7bÞ

WBBk ≥ 0; WB ¼ 1B; WBBk ¼ Πþ
BkWBBkΠþ

Bk :

ð7cÞ

Equations (7a) and (7b) directly correspond to Eqs. (1a)
and (1b); Eqs. (7c) constrain the Choi-Jamiołkowski
operator WBBk so that, in (7b), TrnAB1

ðWΓB

BBkρABÞ ¼
½idA ⊗ ΛSymþðkÞ

B �½ρAB�, with ΛSymþðkÞ
B being the k-extendible

channel isomorphic to WBB1
. We already know that

DF;LSymþðkÞ ðA∶BÞ converges to DF;LEBðA∶BÞ, for k → ∞.
One further checks that it does so by increasing monoton-
ically with k [79]. The no-local-broadcasting theorem
ensures that already the lowest nontrivial element of the
hierarchy (k ¼ 2) is strictly positive for any state that is not
classical on B. Furthermore, each DF;LSymþðkÞ constitutes a
well-behaved measure of the general quantumness of
correlations [40,41].
We can choose to impose additional properties on the

class L of channels considered, so as to, e.g., make them
better approximate entanglement-breaking channels, and
even calculate the exact numerical value for the surprisal of
measurement recoverability in the case where the broadcast
system is a qubit [79]. We implemented (7) in MATLAB [89],
making use of CVX [90,91] and other tools publicly
available [92,93]; see Fig. 2 for numerical results.
Discord, entanglement, and symmetric extensions.—Our

approach, based on a SDP hierarchy dealing with sym-
metric extensions, is inspired by the one used to verify
entanglement [59,60] (see also [63] for applications to the
extendability of channels). It suggests an illuminating and
unifying point of view on entanglement and discord in

terms of symmetric extensions. Entanglement limits how
well a state can be approximated by a state admitting a k-
symmetric extension [61,96]; only separable states admit
such extensions for all k ≥ 2. Discord instead limits how
well a state can be locally transformed into a k-symmetric
extension of itself: only discord-free states can be perfectly
locally broadcast, for any k ≥ 2. While entanglement can be
exactly characterized only in the limit k → ∞, discord
already is in the case k ¼ 2; this is the content of the no-
local-broadcasting theorem [42,43].
Conclusions.—We introduced a hierarchy of discordlike

quantifiers, based on how well a quantum state ρAB can be
locally broadcast. In the limit where we consider infinite
output copies of B, we end up addressing the question of
how well the B part of ρAB can be transmitted through a
measure-and-prepare process. Each nontrivial discordlike
quantifier in our hierarchy is nonvanishing for all the states
that are not classical on B, and corresponds to a SDP
optimization problem. It can be reliably and efficiently
computed numerically, because of the polynomial scaling
of the parameters of the SDP in the dimensions of the
systems involved (for a fixed number of copies) and in the
number of copies (for fixed dimensions) [59,60]. Each
element of the hierarchy has a clear physical meaning in
itself and satisfies the basic properties to be expected for a
meaningful discordlike quantifier, but it also constitutes a
lower bound to the standard quantum discord [36,37]. In
the case of a qubit-qudit system, with measurement on the
qubit, a tailored SDP program outputs the surprisal of
measurement recoverability of Ref. [22], and thus the best
possible lower bound to standard quantum discord based on
the breakthrough result about quantum Markov chains of
Fawzi and Renner [54]. Our approach sheds light on the

FIG. 2. A hierarchy of lower bounds to quantum discord.
Let ρABðθÞ¼1

2
j0ih0jA⊗ jψ0ðθÞihψ0ðθÞjBþ1

2
j1ih1jA⊗ jψ1ðθÞi

hψ1ðθÞjB, with jψaðθÞi ¼ cosðθ=2Þj0i þ ð−1Þa sinðθ=2Þj1i,
a ¼ 0, 1, for θ ∈ ½0; π=2�. From bottom to top, we plot
DF;LSymþðkÞ for k ¼ 2, 3, 4, 5 (dashed lines), DF;LEB (line with
circles), as calculated via SDP, and the discord proper D (on B)
(solid line) as calculated in [94,95]. Any element in the hierarchy
certifies quantitatively that the state ρABðθÞ is classical on B only
for θ ¼ 0, π=2.
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conceptual relation between entanglement, discord, and
shareability, with potential applications in diverse fields
like quantum information processing, quantum founda-
tions, and many-body physics. Two questions that we leave
open for future work regard the possible extension of
our approach to the multipartite case and to infinite-
dimensional systems; we point out that the consideration
of a discordlike quantifier with local measurements on
many parties [42] poses a challenge in approximating the
local measure-and-prepare channels in a way amenable to a
SDP, since it is naturally nonlinear in the unknown local
operations [97].
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