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The surface of a 3D topological insulator is described by a helical electron state with the electron’s spin
and momentum locked together. We show that in the presence of ferromagnetic fluctuations the surface of a
topological insulator is unstable towards a superconducting state with unusual pairing, dubbed Amperean
pairing. The key idea is that the dynamical fluctuations of a ferromagnetic layer deposited on the surface of
a topological insulator couple to the electrons as gauge fields. The transverse components of the magnetic
gauge fields are unscreened and can mediate an effective interaction between electrons. There is an
attractive interaction between electrons with momenta in the same direction which makes the pairing to be
of Amperean type. We show that this attractive interaction leads to a p-wave pairing instability of the Fermi
surface in the Cooper channel.
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Introduction.—It is known that the Coulomb interaction
in normal metals is usually screened by electrons leading to
short-ranged and momentum independent interactions,
which gives rise to conventional Fermi liquid theory
[1,2]. The current-current magnetic interaction between
electrons, where the interaction is mediated by exchange of
transverse photons, however, remains unscreened. Because
of the interaction of the gapless bosonic modes with
fermions, nonanalytic corrections arise in various physical
quantities which clearly point to non-Fermi liquid behavior
[3,4]. The effect is purely relativistic and is proportional to
ðvF=cÞ2, where vF is the Fermi velocity of electrons and c
is speed of light. Hence, the corresponding bare interaction
is comparatively smaller than coupling constants.
While the relevance of transverse photons in normal

metals and their physical signatures are parametrically
small, the search for nonphoton mediated current-current
interactions has been extended to other systems such as
U(1) gauge fields in the spin liquid description of the Mott
phase of organic compounds [5,6], a doped Mott insulator
[7], and the Halperin-Lee-Read state [8]. The normal state
resistivity of a doped Mott insulator exhibits a T4=3

temperature dependence [9] and a T2=3 contribution to
the specific heat [10,11] in the presence of the U(1) gauge
fluctuations, which manifestly deviates from the Fermi
liquid. It was also shown that the U(1) gauge fluctuations
can induce a new mechanism for pairing of the spinons in a
gapless spin liquid, so-called Amperean pairing [12], with a
possible application to the pseudogap phase of cuprate
superconductors [13].
Given the maturity of heterostructure materials synthesis

and recent progress in topological insulators, in this Letter
we propose a realistic system where the interaction between
the fermions and gapless bosons can be engineered to
realize an effective fermion-gauge theory and an Amperean

superconductor. The system is made of a ferromagnetic
(FM) layer deposited on the surface of a 3D topological
insulator (TI) such as Bi2Te3 and Bi2Se3. The surface state
consists of a single helical Dirac cone [14,15], where the
electron spin and momentum are locked together, affecting
the transport phenomena and collective excitations [16,17].
Some previous works have focused on the effect of static

[18–23] and dynamical [24–27] magnetic fluctuations. We
consider the effect of transverse dynamical magnetic fluc-
tuations on a doped Dirac cone. We will show that the latter
have profound effects on helical states. Here is a summary
of our results: (i) transverse magnetic fluctuations are
unscreened and mediate an effective interaction between
electrons; (ii) the effective interaction is singular at small
frequency and momentum transfer and leads to non-Fermi
liquid behavior at very low energies; (iii) the effective
interaction has an Amperean form: it is attractive between
electrons near the Fermi surface moving in the same
direction; (iv) the attractive interaction leads to a pairing
instability of the Fermi surface, dubbed Amperean pairing.
Model.—Consider a hybrid system of a ferromagnet with

spin density ρs and the surface of TI as shown in Fig. 1(a).
The continuum action of a quantum ferromagnet with local
moments S ¼ Sn is given by [28]

Sm ¼ ρs
2

Z
dτddx½−2iAðnÞ · ∂τnþ κð∇nÞ2�: ð1Þ

Here, κ ¼ JSa20, where J is the ferromagnetic exchange
coupling and a0 is the lattice spacing. We use κ to define
magnon mass ms via κ ¼ 1=2ms (ℏ ¼ 1) below. The first
term in the action is the Wess-Zumino term where the
vector potential A creates a local magnetic field as
∇n ×AðnÞ ¼ n. We assume that the magnetic order in
the ferromagnet is along the normal direction z. In order to
describe the ferromagnetic magnons lðτ; rÞ, we write
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n ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jlj2

p
þ l, where jlj ≪ 1 and z · l ¼ 0, leading to

A ¼ 1=2ðz × lÞ. Neglecting orders higher than quadratic
terms, the action of magnons is written as [29]

Sm ¼ ρs
2

Z
dτdxd½iðl × ∂τlÞz þ κð∇lÞ2�: ð2Þ

The following action describes the Dirac electrons and
their coupling to the ferromagnet moments:

SD ¼
Z

dτdrψ̄ ½∂τ þ vFðp × σÞz − μF − gn · σ�ψ : ð3Þ

The spinor fields ψðτ; rÞ ¼ ðψ↑;ψ↓ÞT describe the elec-
trons and σ is a vector of the Pauli matrices, representing
spin. Other parameters are the Fermi energy μF and the
coupling g between electrons and magnetic moments. As
we concentrate on the doped regime which is relevant to the
experiments [14,15], we will ignore a uniform coupling gσz
to the electrons that opens up a gap of magnitude 2jgj at the
Dirac node.
The helical nature of surface states allows us to present the

magnetic fluctuations as dynamical gauge fields a ¼
gv−1F l × z minimally coupled to electrons. It can be split
into longitudinal and transverse components as a ¼ aL þ aT
so that ∇ · aT ¼ 0 and ∇ × aL ¼ 0. The transverse part is
responsible for the emergent magnetic field Bz ¼
ð∇ × aTÞz ¼ −gv−1F ∇ · lL perpendicular to the surface,
and the longitudinal part generates an emergent electric field
E ¼ −∂taL ¼ −gv−1F ∂tlT . Here, lL and lT are, respectively,
the longitudinal and transverse components. A local gauge
transformation can eliminate the longitudinal part of the
gauge field aL and transforms it to the scalar potential φ, i.e.

the temporal component. The resulting action, describing
electrons coupled to the transverse gauge field and the scalar
potential, can be written as follows:

SD ¼
Z

dτdrψ̄ ½∂τ þ vFðΠ × σÞz − μF þ iφ�ψ ; ð4Þ

where Π ¼ p − aT .
Bosonic propagators.—We express the bare magnon

action in Eq. (2) in terms of transverse and temporal
components. We obtain the temporal D0

φðqÞ ¼
hφð−qÞ;φðqÞi and transverse D0

TðqÞ ¼ haTð−qÞ; aTðqÞi
propagators by, respectively, integrating out the transverse
and temporal fields as follows:

D0
φðqÞ ¼

1

2ρs

2κq2n
q2n þΩ2

q
; D0

TðqÞ ¼
1

2ρs

2Ωq

q2n þ Ω2
q
: ð5Þ

Here, q ¼ ðqn;qÞ, where qn ¼ 2nπ=β with β ¼ 1=T, and q
is 2D momentum. We use real frequencies Ω and ω for
analytically continued boson and fermion propagators,
respectively, throughout. The magnon dispersion is
Ωq ¼ κjqj2. As we are interested in the low frequency
regime, where the transverse field propagator is singular
and theAmpereanpairing sets in, the propagator for temporal
fields is not singular enough and can be ignored. Therefore,
the pairing instability sets in even in the presence of a
repulsive interaction due to the temporal components [9].We
are left with a theory of helical electrons coupled to the
massless and unscreened transverse magnons. We write the
latter in terms of bare and dressed magnon propagators
characterized by a dimensionless coupling constant

FIG. 1. (a) A ferromagnetic layer deposited on the surface of a topological insulator; (b) the blue (light) disk indicates the region in
momentum space bounded by a Fermi surface with Fermi energy μF. Small arrows on the Fermi surface indicate an attractive interaction
between electrons (red balls) with momenta p1 and p2 and the angle between them is ϕp1;p2

¼ ϕp2
− ϕp1

. (c) Feynman diagrammatic
representation of Bethe-Salpeter equation and the interaction in direct and exchange channels, and in (d) we show the regions with the
non-Fermi liquid behavior and pairing instability at zero temperature. The horizontal axis stands for the frequency of transverse magnon
excitations with propagator DTðqÞ. In the low frequency regime, the excitations are highly damped and ΣðωÞ ∼ ω2=3, while in the
opposite regime up to an energy scale given by α2 the magnons are described by a bare propagator D0

TðqÞ and ΣðωÞ ∼ ω1=2 dominates
over the linear term. In both regimes the system is unstable to Amperean pairing. For some experimentally relevant parameters the
propagator of magnons falls into the damped regime shown by a blue solid disk with strong instability to Amperean pairing.

PRL 117, 076806 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

12 AUGUST 2016

076806-2



α0 ¼ g2ρF=ρsΩs ¼ uη−1, where ρF is the density of states at
the Fermi surface and Ωs ¼ ημF is to be understood as a
maximum energy transferred by magnons. Here, we intro-
duced two dimensionless controlling parameters u ¼
g2ρF=ρsμF and η ¼ mD=ms, where mD ¼ μF=v2F is to be
interpreted as the mass of Dirac electrons. For a typical set of
parameters, whichwediscuss at the end of the paper,we have
α0 ∼ 1 and η ≪ 1. Hence, not only does the strength of the
Amperean interaction become singular especially near the
bosonic poles but also it acquires moderate strength even
away from the bosonic poles. The presence of a small
parameter η ≪ 1, which implies that magnons are much
slower than Dirac fermions, allows us to neglect vertex
corrections in the spirit of the Migdal theorem [30,31]. As a
result, the dressed propagator of transverse fields in the one-
loop approximation is given by

DTðqÞ ¼
1

2ρs

2Ωq

Ω2
q þ q2n þ γ0Ωq

jqnj
vjqj

; ð6Þ

where γ0 ¼ g2ρF=ρs is the Landau damping. In the regime
Ω ≫ α1μF, where α1 ≃ α0η

2, the Landau damping term in
the denominator of Eq. (6) can be ignored reducing the
dressed propagatorDTðqÞ to the bare propagatorD0

T. On the
other hand for Ω ≪ α1μF the Landau damping term domi-
nates and the propagator becomes DTðqÞ ¼ 1=ρsðκjqj2 þ
γ0jqnj=vjqjÞ resembling the critical bosonic soft modesΩ ∼
qz with dynamical exponent z ¼ 3 appearing in different
contexts such as gauge theory [32] of high-Tc superconduc-
tors [33] and critical ferromagnetic systems [34]. There are
also other energy scales ω ∼ α2;3μF, where α2 ≃ α20η and
α3 ≃ α20, which determine the non-Fermi liquid behavior of
electrons. We will discuss this below.
Transverse magnon-mediated interaction.—Upon inte-

grating out the transverse magnons and projecting into the
conduction band, we obtain the effective interaction
between electrons as

Sint ¼ −
1

2Vβ

X
p1;p2;q

Vp1;p2
ðqÞψ̄p1þqψ̄p2−qψp2

ψp1
; ð7Þ

where V is the volume of the system. Note that the
fermionic fields ψ’s have only a conduction band index,
so the interaction is between the effective spinless fermions.
The key observation in Eq. (7) is the form of the interaction:
that is Vp1;p2

ðqÞ ¼ g2DTðqÞΛp1;p2
ðqÞ with

Λp1;p2
ðqÞ¼1

2
½cosðϕp1

−ϕp2
Þ−cosðϕp1

þϕp2
−2ϕqÞ�; ð8Þ

where ϕ’s are the angles characterizing the corresponding
momentum. For small momentum transfers jqj ≪ jQj,
where Q is the Fermi momentum, the angle ϕq varies
between zero and 2π for fixed incoming momenta, making
the second term vanish in angular integration on ϕq. Thus,
Λ depends upon the angle between two incoming

momenta: Λ≃ p̂1 · p̂2=2, where the hat stands for unit
vector. Importantly, Λ is positive for electrons moving in
almost the same direction, making the interaction attractive.
This resembles attraction between two wires carrying
comoving currents and is the basis of the Amperean pairing
theory as originally proposed by Lee et al. [12]. Hence, the
source of attractive interaction in our case is markedly
different from other spin fluctuation mediated pairings in,
e.g., pnictides [35,36] or UCoGe [37].
The attractive interaction between electrons can lead to a

Cooper-pairing instability that we explore below. Unlike
the conventional superconductors with singlet pairing
between electrons residing on opposite sides of the
Fermi surface, Amperean pairing occurs between electrons
residing on the same side of the Fermi surface. This means
that in Eq. (7) the incoming momenta are to be taken as
p1 ¼ Qþ p and p2 ¼ Q − p with jpj ≪ jQj. This leads to
Λ≃ 1=2. In examining the pairing instability, the inter-
actions should be treated in both direct and exchange
channels [38] due to the spinless interaction. This amounts
to rewriting the interaction as

Sint ¼ −
1

2Vβ

X
p;k

Vðk; pÞψ̄Qþkψ̄Q−kψQ−pψQþp; ð9Þ

where Vðk; pÞ ¼ 1=4½DTðk − pÞ −DTðkþ pÞ� and k ¼
qþ p as shown diagrammatically in Fig. 1(c). Given the
p-wave character of the pair wave function, both channels
have the samecontributions to the eigenvalue problembelow.
Amperean pairing.—In order to examine the Amperean

pairing instability of the Fermi surface, we examine the
Bethe-Salpeter equation for the effective interaction in
Eq. (9) in the Cooper channel as shown diagrammatically
in Fig. 1(c),

Γp;k¼Vðp;kÞþ1

β

X
p0

Vðp;p0ÞGQðp0ÞGQð−p0ÞΓp0;k; ð10Þ

where GQð�pÞ is the dressed Green function of electrons
with energy dispersion εQ�p. Since only one of the momen-
tum components of Γp;k is involved in the sum, it amounts to
an eigenvalue problem. Let uswriteΓp;k ¼ ΦkðpÞ and recast
it into

EΦkðpÞ ¼
1

β

X
p0

Vðp; p0ÞGQðp0ÞGQð−p0ÞΦkðp0Þ: ð11Þ

This is the Bardeen-Cooper-Schrieffer self-consistency
equation and Φ measures the pairing amplitude [39]. The
instability towards Amperean pairing is signaled as E ≥ 1.
We shall argue that the strength of singularity in the Cooper
channel depends on the renormalization of electrons by
transverse magnons via the electron self-energy ΣðpÞ.
We now elaborate on the fermionic self-energies in the

regimes whereΩ ≪ α1μF andΩ ≫ α1μF; see also Fig. 1(d).
In the former, the electron propagator is given by
GðpÞ ¼ 1=fi½pn þ ϵLjpn=μFj2=3sgnðpnÞ� − εðpÞg, where
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ϵL ¼ α2=30 μF=2
ffiffiffi
3

p
and εðpÞ is the electron dispersion on the

surface of the TI. Note that we considered the frequency
dependent self-energy correction near the Fermi surface. The
momentum part only renormalizes the mass of the electrons.
It turns out that in this regime the nonanalytic term in the self-
energy is much larger than ω in the denominator of the
electron propagator. Hence, the systembecomes a non-Fermi
liquid at low energies ω ≪ α3μF where α3 ≃ α20. Note that
because α3=α1 ≃ α0η

−1 ≫ 1, the non-Fermi liquid behavior
persists even up to high frequency transfer of magnons.
On the other hand, for the latter regime whereΩ ≫ α1μF,

the transverse magnons are not substantially Landau
damped. In this case the electron propagator is dressed
differently and is given as GðpÞ ¼ 1=½i(pn þ ϵN jpn=
μFj1=2sgnðpnÞ) − εðpÞ�, where ϵN ¼ α0η

1=2μF=8π. The
self-energy could be parametrically larger than ω for ω ≪
α2μF whereα2 ≃ α20η. Note thatα1 ≪ α2. Hence, there exists
a set of energy scales α1 ≪ α2 ≪ α3 determining the
behavior of boson and electron propagators. In treating
the eigenvalue equation in Eq. (11), we focus on low energy
limits of non-Fermi liquids set by α1;2 as shown in Fig. 1(d):
(i) Landau damped and (ii) non-Landau damped regimes. In
both regimes the system is unstable toAmperean pairing.We
discuss each regime separately.
(i) In the Landau damped regime the dressed propagators

are analogous to spinons coupled to singular gauge fields
[12]. At zero temperature we replace the Matsubara sum
with an integral over p0 and the momentum integral
over p is written as two one-dimensional integrals over
p⊥ and p∥ where p⊥ (p∥) is the momentum compo-
nent perpendicular (parallel) to the Fermi momentum.
Following the ansatz presented in Ref. [12] for the wave
function ΦðpÞ ¼ ~Φðp⊥ÞΘðp2⊥=Q − jp∥jÞ, where Θ is the
Heaviside function, the eigenvalue equation becomes

E ~Φðp⊥Þ ¼
Z

dtKðp⊥; tÞ ~Φðtþ p⊥Þ; ð12Þ

where the kernel Kðp⊥; tÞ is given by

Kðp⊥; tÞ ¼
jtjffiffiffi

3
p

πðtþ p⊥Þ2
ln
�
t4=3þ 9ðtþ p⊥Þ4
t4=3þ ðtþ p⊥Þ4

�
: ð13Þ

To get an insight into E, the first approximation would be
to consider a momentum independent wave function. The
rest of the integral is logarithmically diverging, which
signals the possibility of pairing. The existence of a realistic
and nontrivial solution, however, requires that the momen-
tum dependent wave function is taken into account. Our
numerical calculations and the results presented in Ref. [12]
show that there exists such a solution with odd pairing wave
function, and the corresponding eigenvalue becomes larger
than unity for a large enough system. Therefore, the system
is unstable to Amperean pairing. Interestingly enough, the
magnetic coupling g does not appear explicitly in Eq. (13).

Thus, the Amperean pairing sets in even at small couplings,
so long as the bosonic propagator is in the highly damped
regime as shown in Fig. 1(d). Indeed, the instability at zero
temperature here is due to the fact that the kernel is highly
singular. This result indicates that Amperean pairing occurs
even at finite temperatures, which is the main experimen-
tally relevant conclusion of this work.
(ii) In the non-Landau damped regime we found the

eigenvalue equation to be less singular. We obtained the
following expression for the kernel in Eq. (12):

Kðp⊥; tÞ¼
A

4
ffiffiffi
2

p
πðtþp⊥Þ2

ln

�
A2t2þ9ðtþp⊥Þ4
A2t2þðtþp⊥Þ4

�
; ð14Þ

where A ¼ μQ. The eigenvalue problem contains no
dimensional parameters. Upon changing variable t →
t − p⊥ and introducing dimensionless variables x ¼ t=A
and y ¼ p⊥=A, the corresponding eigenvalue equation can
be written as

E ~ΦðyÞ ¼ 1

4
ffiffiffi
2

p
π

Z
dx
x2

ln

�ðx − yÞ2 þ 9x4

ðx − yÞ2 þ x4

�
~ΦðxÞ: ð15Þ

The natural ansatz to check is a constant wave function
~ΦðxÞ ¼ const at y ¼ 0 corresponding to pairing between
electrons right at the Fermi surface. This gives rise to E ¼ 1
in contrast to the logarithmic divergence found in the Landau
damped case. This result shows that the system is quantum
critical on the verge of the Amperean instability. We need,
however, to look for a wave function which is odd in
momentum, i.e. a p-wave one. Viewing the kernel as a
matrix, we observed that there exists such a solution. In fact,
the momentum dependent solution shows that the maximum
eigenvalue of the kernel becomes even larger than unity
signaling the instability of the system towards the pairing
formation. Therefore, even in the regime with small energy
transfer of magnons, as shown in Fig. 1(d), the non-Fermi
liquid behavior and pairing instability take place.
Concluding remarks.—In conclusion, we demonstrated

that there exists anAmperean pairing instability at the surface
of a 3D topological insulator when the Dirac electrons are
coupled to ferromagnetic fluctuations. The key idea is that
the ferromagnetic fluctuations are minimally coupled to the
electrons as gauge fields. The transverse components of the
gauge field remains gapless even in the presence of finite
chemical doping; they are not screened and mediate an
attractive interaction between electronsmoving almost in the
same direction. We showed that there exists strong pairing
instability and the system becomes unstable toward a super-
conducting state with finite-momentum Cooper pairs. The
latter state yields some analogy with Fulde-Ferrell-Larkin-
Ovchinnikov state [40,41], where a nonuniform ground state
appears due to completely different reasons. The nonuniform
ground state can then be probed by various methods such as
scanning tunneling spectroscopy [42], the Josephson effect
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[43,44], and possibly Andreev reflection [45]. For estima-
tions of energy scales we used the following typical set of
experimentally relevant parameters g ¼ 25 meV [46–49],
ρs ¼ 4 × 1012 cm−2, μF ¼ 0.1 eV, and ms ¼ 3.6 ×
1010 eVS2=m2 leading to values of α0 ∼ 1, u ≈ 1.5 ×
10−3 and η ≈ 10−3 for dimensionless parameters. For this
set of parameters, we found the characteristic energy transfer
of magnon excitations falls into the Landau damped regime,
the case (i), as marked by a blue disk in Fig. 1(d) with a
transition temperature of about Tc ∼ 1 K. Nevertheless, we
also explored the undamped regime, the case (ii), to
emphasize the possible extension of pairing instability by
tuning the parameters so that the latter regime can be
achieved. Two modifications can be made in our system:
instead of heterostructure shown in Fig. 1(a) one could also
use TI/FM even with a metallic ferromagnet such as Bi/Ni
[50], where a transition to superconductivity at 4 K was
reported. The main prediction of this work is that hetero-
sructures (e.g., Bi2Se3 and Bi2Te3 as TI and EuS and Ni as
ferromagnets), straightforwardly achievable with current
experimental capabilities [48,51], host a non-Fermi liquid
state and an exotic Amperean superconductor.
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