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We present a procedure for exactly diagonalizing finite-range quadratic fermionic Hamiltonians with
arbitrary boundary conditions in one of D dimensions, and periodic in the remaining D − 1. The key is a
Hamiltonian-dependent separation of the bulk from the boundary. By combining information from the two,
we identify a matrix function that fully characterizes the solutions, and may be used to construct an
efficiently computable indicator of bulk-boundary correspondence. As an illustration, we show how our
approach correctly describes the zero-energy Majorana modes of a time-reversal-invariant s-wave two-
band superconductor in a Josephson ring configuration, and predicts that a fractional 4π-periodic
Josephson effect can only be observed in phases hosting an odd number of Majorana pairs per boundary.
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Developing a quantitative understanding of the physical
properties of fermionic systems in the presence of non-
trivial boundaries has widespread significance from both a
fundamental and applied perspective. Not only has the
behavior of fermions at a boundary informed leading
material-characterization techniques like angle-resolved
photoemission spectroscopy [1] and the revolution in
metrology brought about by the integer quantum Hall
effect [2]; nowadays, surface states of topological insula-
tors and Majorana boundary modes of topological super-
conductors [3,4] play a central role in state-of-the-art
proposals ranging from coherent spintronics [5,6] to
topological quantum computation [7,8].
All of the above phenomena are linked by a common

theme: topologically nontrivial band structures [4]. Band
structure theory, including the topological classification of
mean-field fermionic systems [9], rests on a manifestation
of crystal translational symmetry, the Bloch theorem. Since
translational symmetry is broken by the presence of a
boundary, it is remarkable that there exists a connection
between the topological nature of the bulk and the
boundary physics—the bulk-boundary (BB) correspon-
dence [4,10]. This principle states that a topologically
nontrivial bulk mandates the emergence of fermionic states
localized on the boundary, when boundary conditions
(BCs) are changed from periodic to open, and that such
states are distinguished by their robustness against sym-
metry-preserving local perturbations. While this heuristics
has been numerically validated in a variety of cases, and
rigorous results exist for discrete-time systems described by
one-dimensional quantum walks [11], no general analytic
insight is available as yet. Allowing for arbitrary BCs is
necessary for any theory of BB correspondence to capture
the robustness of the emerging localized modes to different
perturbations [12]. Further motivation stems from studies
of quantum quenches [13,14], where robustness against

changes of the BCs has been argued to control the (quasi)
local symmetries that characterize the stationary properties
in the bulk. Tackling these issues calls for a procedure to
determine energy eigenstates of lattice Hamiltonians with
arbitrary BCs, comparable in conceptual and computational
power to what the Fourier transform accomplishes in the
periodic case.
In this work, we introduce a methodology for diagonal-

izing in closed form finite-range quadratic fermionic
Hamiltonians with translational symmetry broken by arbi-
trary BCs. Our central insight is a generalization of Bloch’s
theorem built on the recognition that a useful separation of
the bulk from the boundary should be model-dependent.
We identify an indicator for BB correspondence, that
exploits both information about the bulk—encoded in
“generalized Bloch states”—and the nature of the boun-
dary—encoded in a “boundary matrix.” For periodic BCs,
we prove that, generically, such indicator predicts no
localized edge state irrespective of the bulk structure. As
an application, we explore the Josephson response of an
s-wave, time-reversal-invariant two-band topological
superconductor (TS) introduced in [15], and show how
the boundary matrix reveals that a fractional Josephson
effect occurs only in the phase with one pair of Majoranas
per boundary, consistent with the physical picture based on
fermion parity switches [16]. Mathematically, our approach
generalizes existing algorithms for diagonalizing banded
Toeplitz matrices [17] to the block-Toeplitz case with
arbitrary corner modifications, with complexity indepen-
dent upon system size.
Model Hamiltonians.—Consider fermionic systems

defined on a one-dimensional lattice consisting of j ¼
0;…; L − 1 identical cells, each containing m ¼ 1;…; d
internal degrees of freedom, associated for instance to spin
and orbital motion. Let the creation (annihilation) operator
for mode labeled by (j,m) be denoted by c†j;m (cj;m), and let
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ψ†
j ≡ ½c†j;1c†j;2 � � � c†j;dcj;1cj;2 � � � cj;d� be the corresponding

ð2dÞ-dimensional Nambu vector. We consider finite-range
R, R ≪ L, disorder-free quadratic Hamiltonians of the form

Ĥ ¼ 1

2

XR

r¼0

� XL−r−1

j¼0

ψ†
jhrψ jþr þ

XL−1

j¼L−r
ψ†
jgrψ jþr−L þ H:c:

�
;

ð1Þ
where the matrices hr and gr describe hopping and pairing
among fermions situated r cells apart in the bulk and,
respectively, at the boundary. In this way, standard periodic
and open BCs correspond to gr ¼ hr and gr ¼ 0, ∀r.
Hamiltonians of the form (1) arise ubiquitously in mean-
field descriptions of fermionic systems as realized in both
solid-state and cold-atom platforms [18–20].
Analyzing the single-particle sector of Ĥ suffices to

study its many-body spectrum [18]. That is, we let
Ĥ ¼ 1

2
Ψ†HΨ, with Ψ† ≡ ½ψ†

0…ψ†
L−1�. In this way, the

Hilbert space H on which the single-particle
Hamiltonian H acts may be conveniently factorized into
the tensor product of two subsystems, H≃ CL ⊗ C2d≡
HL ⊗ HI , associated with lattice and internal factors. Let
the operators cj;m and c†j;m be associated with vectors jjijmi
and jjijmþ di, respectively. In the basis fjjijmij0 ≤ j ≤
L − 1; 1 ≤ m ≤ 2dg, H is given by

H ¼
XR

r¼0

½Tr ⊗ hr þ ðT†ÞL−r ⊗ gr þ H:c:�; ð2Þ

where T is the left-shift operator Tjji≡ jj − 1i, ∀j ≠ 0,
Tj0i≡ 0, and T† implements the corresponding right shift.
Thus, H is a “corner-perturbed” banded block-Toeplitz
matrix with 2Rþ 1 bands. Namely, the rth off-diagonal
bands above and below the diagonal have blocks given by
bulk interaction matrices hr and h†r , respectively, whereas
boundary terms appear in the corner of the matrix. The
(L − r)th off-diagonal bands above and below the diagonal,
which lie close to the corners, consist of blocks given by g†r
and gr, respectively.
Periodic boundary conditions revisited.—Periodic BCs

are employed in calculations of band structure and
bulk topological invariants alike [4]. In this case, the
single-particle Hamiltonian H in Eq. (2) is a circulant
block-Toeplitz matrix, which may be expressed as
H ¼ P

R
r¼0ðVr ⊗ hr þ H:c:Þ, in terms of the cyclic left-

shift operator V ≡ T þ ðT†ÞL−1. Crucially, translational
symmetry implies that H, V, and V† form a commutative
set, allowing for the eigenspectrum of H to be determined
via standard discrete Fourier transform from the lattice to
the momentum basis on HL. For later reference, let us
introduce the generalized z-transformed lattice basis,

jzi≡ 1ffiffiffiffiffiffiffiffiffiffi
NðzÞp

XL−1

j¼0

zjjji; z ∈ C; z ≠ 0; ð3Þ

where NðzÞ is a normalization constant, and define the
“reduced bulk Hamiltonian” hBðzÞ as the matrix-valued
symbol [21] of the block-Toeplitz matrix without boundary
terms:

hBðzÞ≡
XR

r¼0

ðzrhr þ z−rh†rÞ: ð4Þ

The generalized discrete Fourier transform in Eq. (3)
associates z with the pseudomomentum k, with z≡ eik

and k≡ 2πq=L, q ∈ f0; 1;…; L − 1g, defining the (first)
Brillouin zone. Then, the eigenvectors of H may be
expressed as jϵi≡ jzijuðϵ; zÞi, where juðϵ; zÞi is the
eigenvector of the reduced bulk Hamiltonian hBðzÞ with
eigenvalue ϵ—which is simply a reformulation of the
familiar Bloch theorem. The cyclic shift symmetry restricts
solutions to the Brillouin zone, and z to lie on the unit
circle. Therefore, by diagonalizing hBðzÞ for all q, the
complete quasiparticle energy spectrum and the corre-
sponding eigenvectors may be obtained.
As lattice translation ceases to be a symmetry, the

discrete Fourier transform fails to diagonalize H. In
particular, the left and right shift operators T and T† do
not share a common eigenbasis, calling for a different
diagonalization approach. We next introduce a new diag-
onalization method that relies on a mapping of the Brillouin
zone to the full complex plane.
Bulk-boundary separation and bulk equation.—

Hamiltonians with arbitrary BCs are locally symmetric
under left and right shifts in the bulk; however, these
symmetries are explicitly broken at and near the bounda-
ries. The crux of our approach consists of separating bulk
from boundary subsystems. To this end, we define orthogo-
nal projectors onto the bulk, PB ≡P

L−R−1
j¼R jjihjj, and

onto the boundary, P∂ ≡ 1L − PB, where 1L is the
L-dimensional identity operator on HL. The eigenvalue
equation for H then splits into a bulk and a boundary
equation: PBHjϵi ¼ ϵPBjϵi, and P∂Hjϵi ¼ ϵP∂ jϵi. The
advantage of such a separation is that one obtains simulta-
neous (relative) eigenvectors of the bulk-projected T and
T† operators. The resulting eigenvalue equations are:
PBTrjzi ¼ zrPBjzi, PBðT†Þr0 jzi ¼ z−r

0
PBjzi, ∀r, r0 ≤ R,

while PBTr ¼ 0 ¼ PBðT†Þr0 , ∀r, r0 ≥ L − R. As for peri-
odic BCs, it follows that these “generalized Bloch states”
are of product form jzijuðϵ; zÞi, where as above juðϵ; zÞi is
an eigenvector of hBðzÞ with eigenvalue ϵ.
By construction, hBðzÞ is a small matrix, of dimension

2d × 2d. If 1I denotes the 2d-dimensional identity operator
on HI , the relevant characteristic equation establishes a
functional relationship between ϵ and z, of the form

Pðϵ; zÞ≡ z2dR det½ðhBðzÞ − ϵ1IÞ� ¼ 0; ð5Þ
where the prefactor z2dR ensures that Pðϵ; zÞ is a bivariate
polynomial in ϵ and z, of degree at most ð2RÞð2dÞ ¼ 4dR.
In general, there may exist multiple generalized Bloch
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states corresponding to a given value of ϵ. Let zlðϵÞ,
l ¼ 1;…; n, denote the (nonzero) distinct roots of Eq. (5)
for the given ϵ, and slðϵÞ the corresponding number of
linearly independent eigenvectors of hBðzlÞ [that is, the
nullity of ðhBðzlÞ − ϵ1I)]. The eigenvectors of H may then
be written as linear combinations of degenerate generalized
Bloch states:

jϵi≡Xn

l¼1

Xsl

s¼1

αl;sjzlðϵÞijusðϵ; zlÞi; αl;s ∈ C: ð6Þ

In this way, the solutions of the bulk equation provide an
ansatz for the eigenvectors of H, where the amplitudes αl;s
are yet to be determined [22]. Of particular interest is the
ansatz for ϵ ¼ 0, which provides a family of possible zero-
energy modes of the system, independent of the BCs.
Notice that the solution of the bulk equation alone does not
imply the existence of an excitation at a given value of ϵ,
unless the boundary equation is simultaneously satisfied.
In general, hBðzÞ is not Hermitian, except on the unit

circle jzj ¼ 1. This is not surprising since such an effective
Hamiltonian represents an open system, with no boundaries
and no torus topology [23]. Generalized Bloch states exist
for every z ≠ 0, realizing an over-complete set of solutions
of the bulk equation. Those consistent with values of z on
the unit circle are in one-to-one correspondence with the
solutions of the infinite periodic system. The rest corre-
spond to solutions with exponential behavior, providing a
continuation off the Brillouin zone. Thus, Eq. (6) may be
regarded as a generalization of the Bloch theorem to
arbitrary BCs, with Eq. (5) providing a natural analytic
continuation of the dispersion relation.
Boundary equation and emergence of localized

modes.—The ansatz (6) yields an eigenvector of H only
if the boundary equation, P∂ðH − ϵ1Þjϵi ¼ 0, is satisfied
for appropriate αl;s, with 1 denoting the identity operator
on H. For notational simplicity, let us assume that sl ¼ 1,
∀l, ϵ, so that αl;s ≡ αl and n ¼ 4dR (see [22,24] for the
general case). To make the action of the projector P∂
explicit, it is convenient to isolate the 4dR basis states inH
that correspond to lattice sites on the boundary, by letting
fjbi≡ jjijmij0≤ j≤R−1;L−R≤ j≤L−1;1≤m≤ 2dg.
The above boundary equation may then be rewritten asP

n
l¼1 αlBL;blðϵÞ ¼ 0, where the “boundary matrix” BLðϵÞ

for size L and energy ϵ is the matrix with entries given by

½BLðϵÞ�bl¼BL;blðϵÞ≡hbjðH−ϵ1ÞjzlðϵÞiju1ðϵ;zlÞi: ð7Þ

By construction, any set of values of fαlg satisfying Eq. (7)
is a vector in the kernel of BLðϵÞ. Thus, the boundary
equation may be restated as det½B†

LðϵÞBLðϵÞ� ¼ 0. When
this condition is obeyed, ϵ is an eigenvalue of H, with
degeneracy equal to the nullity of BLðϵÞ.
For fixed BCs (fixed gr), the localized modes of the

system and their energies show asymptotic behavior in the
thermodynamic limit, L → ∞, which our method enables

us to characterize analytically. A localized mode in the
thermodynamic limit has constituent generalized Bloch
states with jzlj ≠ 1. This allows a simplification in the
boundary matrix, as any L-dependent terms in BLðϵÞ
may be replaced by the appropriate limit, given by
limL→∞zLl → 0 and limL→∞z−Ll → 0 for jzlj < 1 and
jzlj > 1, respectively. The existence check for localized
modes and their calculations is then carried out in the same
way as in the finite-L case.
An indicator of bulk-boundary correspondence.—The

boundary matrix defined in Eq. (7) points to a natural
strategy for constructing useful indicators of BB corre-
spondence based on combined information from both the
bulk and the boundary. In particular, for zero-energy
modes, we propose

D≡ logfdet½B†
∞ð0ÞB∞ð0Þ�g ð8Þ

as one such indicator for an infinite system. We claim that
the existence of zero-energy edge modes manifests as a
singularity in the value ofD. Consistent with this claim, we
can rigorously prove that, under generic assumptions on the
matrix hr for r ¼ R, the indicator D is always finite under
periodic BCs, irrespective of the bulk properties; see [24].
We remark that other indicators are also in principle
applicable to systems where translational invariance is
broken (notably, based on Pfaffians [25,26]); even for
clean systems as we consider, however, their numerical
evaluation becomes computationally demanding for large
system size.
Example.—As a first illustration, we revisit the para-

digmatic case of Kitaev’s p-wave TS chain with open BCs
[25] (see [24] for full detail). With reference to Eq. (2), this
nearest-neighbor model corresponds to R ¼ 1 and 2 × 2
matrices 2h0 ¼ −μσz, h1 ¼ −tσz þ iΔσy, g1 ≡ 0, where μ,
t, Δ denote chemical potential, hopping, and superconduct-
ing pairing respectively, and σν, ν ¼ x, y, z, are Pauli
matrices in the Nambu basis. For any ϵ, the characteristic
equation for hBðzÞ, Eq. (5), is quartic in z, which enables a
closed-form solution by radicals. The roots appear as two
reciprocal pairs, say, fz1; z−11 ; z2; z−12 g, where jz1j, jz2j ≤ 1.
For finite chain length L, the boundary equation is satisfied
if any of the two equalities f�ðz1Þ ¼ f�ðz2Þ hold, where
f�ðzÞ ¼ ½bðzÞ=ðϵþ aðzÞÞ�½ð1þ zLþ1Þ=ð1 − zLþ1Þ��1, and
aðzÞ ¼ μþ tðzþ z−1Þ; bðzÞ ¼ Δðz − z−1Þ [27]. In the
thermodynamic limit, the condition for zero-energy edge
modes simplifies to aðz1Þ=bðz1Þ ¼ aðz2Þ=bðz2Þ, which is
satisfied if and only if jμj < j2tj. This parameter regime,
with phase boundary jμj ¼ j2tj, defines the topologically
nontrivial phase, hosting one Majorana mode per edge.
If μ2 < 4jt2 − Δ2j, (z1, z2) form a complex conjugate
pair, whereas for μ2 > 4jt2 − Δ2j, both z1 and z2 are real.
The self-adjoint Majorana mode localized on the left
edge is then given by γ ≡P∞

j¼1ðzj1 − zj2Þðcj∓c†jÞ, for
μ2≶4jt2 − Δ2j.
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Josephson effect in two-band s-wave superconductors.—
The Kitaev chain in its topologically nontrivial phase is
known to exhibit a fractional Josephson effect [25], that is,
the Josephson current is 4π-periodic (more generally,
2πl-periodic, with integer l > 1) as a function of the
superconducting phase difference ϕ, and the many-body
energy EðϕÞ correspondingly switches parity [16]. Such an
effect is regarded as both a hallmark and a leading
observable signature of topological superconductivity. The
simplicity of the topological phase diagram in the Kitaev
chain (either 0 or 1 Majorana mode per edge) allows for an
unambiguous association between a trivial (nontrivial) phase
and a standard (unconventional) Josephson response; how-
ever, it is not a priori obvious what to expect for more
complex TSs, which may support phases with different
numbers of Majorana modes—or, respectively, different
numbers of Majorana pairs per edge, if time-reversal
symmetry is preserved [4]. As we show next, the existence
of localized Majorana modes does not suffice, in general, for
the system to display fractional Josephson effect.
Consider the time-reversal-invariant two-band s-wave

TS wire introduced in [15]. Based on both the original
numerical solution under open BCs and analysis of the
appropriate boundary matrix BLð0Þ [24], phases with zero,
one, or two pairs of (helical) Majorana modes localized on
each boundary may exist. Using a partial Berry-phase
parity as a topological indicator [15], only the phase
hosting one pair of Majorana modes is predicted to be
topologically nontrivial. Thanks to the present analytic
approach, in particular the BB indicator D defined in
Eq. (8), we are now in a position to correlate this prediction
with the more physical—in principle experimentally
accessible—Josephson response of the system.
Our results are summarized in Fig. 1. As the insets

show, a fractional Josephson effect emerges only in the
phase that is predicted to be topologically nontrivial
according to its partial Berry-phase (odd) parity [24].
Some physical insight may be gained by looking at the
dependence of quasiparticle energy upon flux ϕ: as seen in
the top panel, the 4π periodicity is associated with a
crossing of a positive and a negative quasiparticle energy
level; this crossing occurs precisely at zero energy,
indicating the presence of a pair of Majorana modes for
the value of flux at the crossing (solid black lines). In
contrast, in the trivial phase with two pairs of Majorana
modes (middle panel), the level crossing does not occur at
zero energy, leading to the standard 2π periodicity of
EðϕÞ, also found when no Majorana mode is present
(bottom panel). Since these quasiparticle energy levels lie
in the gap, they are localized, and we can carry out the
analysis in the thermodynamic limit [24]. This reveals
that, in the nontrivial phase, the boundary equation is
satisfied at ϕ ¼ π, 3π, confirming the presence of exact
zero energy modes at those values. Even more interest-
ingly, the proposed indicator D has been numerically

evaluated and plotted (dotted red lines): singularities
clearly emerge only in the topologically nontrivial phase,
as claimed.
Discussion.—We investigated finite-range quadratic

fermionic Hamiltonians for which translational symmetry
is broken only by arbitrary BCs, and showed how a
Hamiltonian-dependent BB separation can make the prop-
erty of the system being “almost translationally symmetric”
quantitatively useful—leading to a natural generalization of
the Bloch theorem. Building on this, we described an
efficient diagonalization algorithm which, for D ¼ 1,
reduces the problem of determining the full set of eigen-
values and eigenvectors to one of finding the roots of the
boundary equation. Our algorithm successfully identifies
the interplay between bulk properties—captured by the
generalized Bloch states jzijuðϵ; zÞi—and BCs—captured
by the boundary matrix, BLðϵÞ, of fixed dimension inde-
pendent of L. Since the calculation of L-dependent terms in
BLðϵÞ (to fixed accuracy) may be effected in a single
computation, the complexity of our algorithm is Oð1Þ, in
contrast to O½ðdLÞ3� for generic methods of evaluating the
characteristic polynomial of H.
The advantages of our algorithm extend straightfor-

wardly to D-dimensional quadratic Hamiltonians, D > 1,

FIG. 1. Quasiparticle energies (solid black lines) and BB
indicator D [Eq. (8)] (dashed red line) vs flux ϕ in a phase
supporting one (top), two (middle), and zero (bottom) pairs of
Majorana modes per edge. The grey shaded regions indicate bulk
quasiparticle energies. Insets: many-body ground state energy
EðϕÞ. With reference to [24], the parameter values are
t ¼ λ ¼ Δ ¼ 1, μ ¼ 0, w ¼ 0.2, ucd ¼ 2 (top), ucd ¼ 0.6
(middle), ucd ¼ 3.7 (bottom). In all calculations, lattice size
L ¼ 60 is used.

PRL 117, 076804 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

12 AUGUST 2016

076804-4



if the standard procedure of imposing periodic BCs in
D − 1 directions is employed: in this way, the model
reduces to a poly-sized set of D ¼ 1 lattices subject to
arbitrary BCs, to which our algorithm applies. We thus
expect our approach to both have immediate relevance to
electronic structure calculations for lattice systems, and to
further elucidate gapless topological superconductivity—
notably, the emergence of Majorana flat bands and anoma-
lous BB correspondence uncovered in [28]. For more
general BCs, e.g., two open directions, our model-
dependent procedure for BB separation and generalized
Bloch theorem go through with minor modifications. On
the one hand, this prompts the question of whether the
concept of a Wannier function may also be generalized for
arbitrary BCs. On the other hand, the procedure for
incorporating BCs is more involved, calling for separate
investigation.
Beyond equilibrium scenarios, our approach should prove

advantageous to evaluate in closed form the unitary propa-
gator expð−iĤtÞ describing free evolution under arbitrary
BCs, and to diagonalize the Floquet propagator describing
periodically driven fermionic systems [29]. Since our
algorithm does not exploit the Hermiticity of the
Hamiltonian, a further direction of investigation is the
application to open Fermi systems obeying quadratic
Lindblad master equations [30], with the potential to shed
light onto BB correspondence in engineered topological
phases far from equilibrium [31]. Lastly, despite important
differences at the single-particle level [18], our algorithm
applies to arbitrary BCs in quadratic bosonic systems. This is
an intriguing observation, since there is no BB correspon-
dence for bosons, yet a topological classification might be
possible in terms of generalized, symplectic Berry phases.
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