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Superconductor proximitized one-dimensional semiconductor nanowires with strong spin-orbit inter-
action (SOI) are, at this time, the most promising candidates for the realization of topological quantum
information processing. In current experiments the SOI originates predominantly from extrinsic fields,
induced by finite size effects and applied gate voltages. The dependence of the topological transition in
these devices on microscopic details makes scaling to a large number of devices difficult unless a material
with dominant intrinsic bulk SOI is used. Here, we show that wires made of certain ordered alloys
InAs;_,Sb, have spin splittings up to 20 times larger than those reached in pristine InSb wires. In particular,
we show this for a stable ordered CuPt structure at x = 0.5, which has an inverted band ordering and
realizes a novel type of a topological semimetal with triple degeneracy points in the bulk spectrum that
produce topological surface Fermi arcs. Experimentally achievable strains can either drive this compound
into a topological insulator phase or restore the normal band ordering, making the CuPt-ordered
InAs(5Sby s a semiconductor with a large intrinsic linear in k bulk spin splitting.

DOI: 10.1103/PhysRevLett.117.076403

In recent years, a range of topological phases have been
realized in materials, ranging from topological insulators
(TIs) [1,2] and semimetals (TSMs) [3—6] to superconductors
(TSCs) [7,8]. The nontrivial topology of the ground state
wave functions in these phases causes a variety of phenom-
ena in such materials, ranging from topologically protected
metallic surface or edge states in TIs [1,2] and Fermi arcs and
anomalous magnetotransport in TSMs [4,9-11] to quasipar-
ticles with non-Abelian particle statistics [12—19] in TSCs,
which could be used for topological quantum computa-
tions [20,21].

Arguably the simplest scheme for realizing non-Abelian
statistics in a solid-state device is based on manipulating
Majorana zero modes (MZMs) in networks of semiconductor
wires. MZMs were predicted to appear at the ends of spin-
orbit coupled wires subject to a parallel magnetic field,
proximity coupled to an s-wave superconductor. Experi-
mental observations, consistent with the theory, were
reported for InAs and InSb zinc blende nanowires
[19,22-24].

The stability of MZMs in such a setup depends greatly
on the size of the spin-orbit splitting (SOS) of the
conduction band. SOS is very small in bulk zinc blende
semiconductors [25] and the realization of the MZMs thus
relies on the externally induced Rashba SOS [26], which is
estimated to be of the order of 1 meV [27,28]. This value is
very small compared to the bulk splitting in some recently
discovered compounds [29-32]. However, most of these
materials are not suitable for realizing MZMs within the
above scenario, while for others such experiments appear to
be challenging. It is thus desirable to understand whether
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large values of bulk SOS can be achieved within the III-V
materials class, used in most experiments at this time. A
bulk SOS dominating the Rashba contributions would also
make the realization of MZMs far less sensitive to
particular microscopic details of a specific device.

In this Letter we argue that certain ordered alloys with
composition InAs;_,Sb, have sizable SOS and provide an
optimal material for the realization of MZMs. For ternary
alloys to give an advantage over fixed binary -V
compounds, SOS should be enhanced, ideally while
preserving the high carrier mobility. We thus focus our
attention on ordered superlattice structures. We find, in
particular, that a CuPt ordering with x = 0.5 is energeti-
cally stable and hosts a novel TSM phase, which is
identified as an interpolation of the established Dirac
[33-35] and Weyl [4,7] TSMs. Moreover, the TSM phase
can be tuned either into a TT or a normal insulator phase by
application of strain. We also find that, for the latter, the
spin-orbit energy Egq [36] can be as large as 24 meV.
Experimental evidence for the CuPt ordering of
InAs( 5Sbg 5 exists [37—41], and we argue that nanowires
of this structure can be grown with molecular beam epitaxy.

The SOS of the conduction band in zinc blende struc-
tures is, at most, cubic in k around the I" point [25]. In both
III-V materials, the conduction band has a minimum at I"
and an s-like character dictated by 7'; symmetry. A SOS
linear in k can thus only be achieved by breaking the T,
symmetry. We ask whether there is a modification to the
ITI-V materials such that a bulk linear in £ SOS is achieved.

Disorder in nanoscale structures.—In the randomly
disordered alloy InAs;_,Sb,, any 7,; symmetry breaking
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terms need to vanish because of averaging. However, in a
nanoscale device, like a quantum dot or wire, the averaging
will not be complete and a “bulk” contribution to the linear
in k SOS is expected. We study this effect by simulating
randomly disordered cubic supercells of InAs;_,Sb, [42].
The supercell calculations are facilitated within Slater-
Koster tight-binding models [43] of the sp3s* type [44—46],
with parameters derived from first-principles bulk calcu-
lations employing the HSEO6 hybrid functional [47-50].
See the Supplemental Material [51] for technical details on
the calculation.

Figures 1(b) and 1(c) show the composition dependence
of the band gap E, and the spin-orbit gap A,. The curves
Ey(x) and Ay(x) exhibit the correct bowing (nonlinearity),
and they are in good agreement with recent experiments
[63—65]. The linear in k£ SOS of the lowest conduction band
is quantified by fitting the band structure calculations to an
effective Hamiltonian

+ ak. (1)

The parameter a plays the role of the Rashba parameter in
standard models for Majorana wires [15,16,18]. The
magnitude of this coefficient varies with the k-space
direction, and its dependence on disorder realizations is
shown in Fig. 1(d) for the (110) direction [66]. As expected,
a decreases due to averaging when the supercell size is
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FIG. 1. (a): First-principles band structure of zinc blende InSb
around the I point, plotted up to [k| = 0.1 A~!. Apart from the
A, 5 representations, each plotted band is twofold degenerate. The
next panels illustrate the change in the band structure of
InAs;_,Sb, as a function of x obtained from empirical tight-
binding supercell calculations: (b) the fundamental gap Ey(x),
(c) the spin-orbit gap A((x), with the linear dotted line as a guide
to show the bowing, and (d) the Rashba coefficient a(x) of Eq. (1)
for the SOS in the (110) direction. Various supercell sizes are
shown: 64 (blue), 216 (green), 512 (red), 1000 (cyan), and 1728
(magenta) atoms. (e) the maximum splitting a,,,x with linear
extrapolation to an infinitely large cubic supercell.

enlarged, which is also shown in Fig. 1(e). As a conse-
quence, wires or quantum dots of randomly alloyed
InAs;_,Sb, have a universal bulk contribution to the
SOS that depends strongly on the size of the device.

CuPt-ordered structure.—In contrast to the disordered
configurations above, T, symmetry breaking by alloy
ordering is nonvanishing for arbitrary system sizes.
Since Fig. 1(d) shows that a is maximized in the vicinity
of x=~ 0.6, we focus on small ordered supercells with
x = 0.5 as good candidates for realization of large SOS,
maximizing Ego = (m*a?/2#%). In particular, we consid-
ered three types of ordering reported in experiments on
M-V ternary alloys [38]: ordering in {100} planes (CuAu-I
or L1 structure), ordering in {210} planes (chalcopyrite or
E1, structure), and ordering in {111} planes (CuPt or L1,
structure). The CuPt-type ordering is energetically stable in
InAsy5Sbys [51] and has been experimentally observed
under various growth conditions [37—41]. We find that this
structure also has the biggest enhancement of the SOS (see
the Supplemental Material [51]). We thus consider this type
of ordering in the following.

In the CuPt-ordered InAsysSbys structure, shown in
Fig. 2(a), atoms of As and Sb are arranged in {111} planes
that grow in the alternating order In-As-In-Sb. This order-
ing reduces the 7'; (space group 216) symmetry of the
pristine zinc blende compounds to C3, (space group 160),
which has a threefold rotational axis coinciding with the
(111) direction, and three vertical mirror planes that contain
the symmetry axis and are rotated by 2z/3 relative to each
other. Both the ionic positions and the lattice vectors were
relaxed using the HSEQ6 hybrid functional to get the lowest
energy structure. We found the deviation from the cubic
structure to be smaller than 0.1% [51].

The band structure of CuPt-ordered InAsjsSby s
obtained with HSEO06 is shown in Fig. 2(b). The little
group of k points on the (111) axis in the CuPt structure is
Cs,, as in the zinc blende structure; hence, the same
symmetry label A is used for the bands in Figs. 1(a)
and 2(b). While the A4 5 bands have a very small, linear in
k, splitting, the bands of the A representation are doubly
degenerate. Note that the ordering of the valence and
conduction bands at I' is interchanged for the two
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FIG. 2. (a) Crystal structure of CuPt-ordered InAsjsSbys.
(b) Band structure of CuPt-ordered InAs 5Sby 5 around I (plotted
up to [k| = 0.1 A=1). The colors correspond to the original band
ordering in Fig. 1.
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FIG. 3. (a) Close-up of the TP for the three orthogonal k

directions and at three different values of momentum along the
(111) direction. Band structures obtained from both first-
principles calculations (the red dots) and the k - p model of
Eq. (2) (the solid line) are shown. (b) Nodal lines (red, green, and
blue) connecting the two TPs (the black dots). The grey circles
indicate paths for the Berry phase calculation. (¢) The k - p band
structure for the (111) direction with broken mirror symmetries.
Four Weyl points and their chiral charges are shown.

structures, resulting in a band inversion in the CuPt
structure. We find the band inversion to be stable against
deviations from the CuPt order; specifically, we find that
CuPt-ordered InAsg ¢7Sbg 33 and InAsg 33Sby 67 still show a
strong band inversion [51].

A novel TSM.—In the inverted band structure, the Ag and
A4 5 bands cross [see Fig. 3(a)] to form a new type of TSM.
While theoretical evidence for the band inversion in
ordered InAsysSbys was reported previously [67], the
topology of this semimetal phase was overlooked.

Here, the crossings are protected by the Cj-rotational
symmetry. For inversion-symmetric materials, C5 is known
to stabilize Dirac points on the high-symmetry axis [3,33,34].
The inversion symmetry is absent in InAs 5Sb 5, so two of
the four bands that would form a Dirac point are gapped.
Along the (111) axis, the two singly degenerate bands Ay s
each cross with the doubly degenerate Ag, forming triply
degenerate crossings, or triple points (TPs). In the other two
directions, each TP splits into two linearly dispersing bands
and a quadratically dispersing one [see Fig. 3(a)]. Previously,
TPs have been discussed in the context of Bernal-stacked
graphite with neglected spin-orbit interation (SOI) [68-70],
spin-1 quasiparticles in two dimensions [71,72], and strained
HgTe [73]. Furthermore, the TP we find is accompanied by
four Weyl nodal lines [74] in the vertical mirror planes,
degenerate lines between the second and third bands in
Fig. 3(a), each protected by a Berry phase of 7 [see Fig. 3(b)].

In the vicinity of the crossing point, the band structure
can be described by the following k - p model (see the
Supplemental Material [51]):

TABLE I. Parameters of the fitted k - p model.
Eo(meV) A(eV A) B(eV A)
0.88 -0.42 4.22
C(eV A) D(eV A) F(eV A)
0.78 1.25 —il.51 2.14
Ey+ Ak, 0 Dk, Dk,
y 0 —Ey+ Ak, F*k, —Fk,
kp = ¥
P D*k, Fk,  Bk,+Ck,  Ck,
D*k, —Fk, Ck, Bk, —-Ck,
(2)

For InAs 5Sby 5 the values of the parameters obtained from
fits to the first-principles calculations are listed in
Table I, and the fit is shown in Fig. 3(a). The momentum
(ky,ky.k,) here is given relative to the crossing point
k, = (0,0, k. = 0.0646 A~"), while £, is taken to be in the
(111) direction and k, in the (110) direction.

While a detailed description and a topological classi-
fication of this novel TSM phase will be provided else-
where [75], we outline the proof of the topological origin of
this phase here. An illustrative verification of the topo-
logical origin of this phase is obtained by breaking the
mirror symmetry o, of the C;, group. The doubly degen-
erate band Ag splits into two bands, and four crossings are
formed as shown in Fig. 3(c). All of the four crossings
represent Weyl points, with their chiral charges shown in
the figure [51]. On the other hand, if all inversion symmetry
breaking terms are tuned to zero, one obtains a Dirac TSM,
and thus the TP TSM can be seen as an interpolation of
Dirac and Weyl TSMs.

The presence of Dirac or Weyl points in the bulk
spectrum of metals is associated with the appearance of
Fermi arcs in the surface spectrum [33,35,76-80]. Figure 4
shows the surface density of states, obtained by the iterative
Green’s function method [81]. Topological surface states
forming the two Fermi arcs that connect the two pairs of
TPs at opposite k are clearly visible, similar to the ones
found in Dirac TSMs. Furthermore, we show in the
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FIG. 4. (a) Brillouin zone and surface projection of CuPt-
ordered InAs(5Sby 5. (b) Surface density of states for the (110)
surface. (c) Topological Fermi arcs on the (110) surface.
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FIG. 5. Valence and conduction energy bands near the I point,

plotted up to |k| = 0.1 A=, for CuPt-ordered InAs sSb, 5 under
strain. The colors correspond to the original band ordering of
Fig. 1. (a) 1% compressive strain in the (001)-direction. (b) 3%
compressive strain applied in the (111) direction.

Supplemental Material [51] that the Landau level spectrum
is gapless for a magnetic field aligned parallel to the
symmetry axis, hinting at anomalous transport in the
presence of magnetic fields [9-11].

Optimizing the structure for MZMs.—Having established
the existence of a novel TSM phase in InAs 5sSby 5, we now
return to our original purpose of finding an optimal
structure for MZM realization. Upon breaking the C;
symmetry by strain [e.g., (001) strain], the degeneracy at
the TPs is lifted and the system becomes a semiconductor.
The inverted band structure makes it a strong 3D TI in this
case, as verified by computing the Z, topological invariant
[82]. Figure 5(a) shows the HSEO6 band structure for 1%
compressive strain in the (001) direction, when all of the
symmetries of the Cj;, structure are broken. In this
configuration MZMs can appear in proximitized wires of
TIs, as discussed in a pair of works [83,84].

The ordinary band ordering in CuPt-ordered InAsg 5Sb 5
can be restored by applying a symmetry-preserving

TABLE II. Linear coefficient @ of Eq. (1) and Egq for different
k-space directions in the CuPt-ordered compound. The spin-orbit
precession length [ = h?/m*a and the Landé g factor, for a
magnetic field parallel to a gate-defined wire in a thin film of
50 nm thickness [51], is also shown. E, is calculated using Al as
the bulk superconductor and assuming a mobility of
u =103 cm?/Vs.

Material (111) (110) (001) (110) (112)
a@VA 00 08 10 1.1 10

Eso (meV) 00 27 34 35 35

InAssSby 5 m* (m,) 024 0.16 0.14 0.12 0.13

Ix (A) © 60 55 60 60

lg] 115 95 65 194 177
E,(K) 00 10 11 L1 1l
a@VA 00 08 12 14 14
Eso meV) 00 6 14 24 24
m* (m,) 047 037 041 047 0.50
I (A) o 25 16 11 11

lg] 83 69 47 164 161
E,(K) 00 15 17 17 18

—2% (111) strain

IHASO'S Sb0_5
—3% (111) strain

compressive (111) strain of > 2%. Such strain values are
easily achievable in nanowires due to lattice mismatch
[85,86]. Moreover, epitaxial semisuper InAs/Al nanowires
were reported to bend during the growth process, thus
being naturally strained asymmetrically along the (111)
growth direction [87].

The HSEO6 band structure of (111)-strained InAsg 5Sb 5
is shown in Fig. 5(b) for a 3% strain. In this case the
conduction bands acquire a sizable linear in k SOS in any
direction but (111) (see Table II). We find that the Rashba
coefficient a is significantly larger than that reported for
pristine InSb nanowires [27], and the corresponding Egg
can reach values up to 24 meV, as illustrated in Fig. 6(a) and
Table II. Note that the SOS considered here is bulk only and
will additionally contribute to the Rashba splitting appear-
ing in a confined geometry.

From Table II one can see that Eg is large for all of the
directions orthogonal to the C5 axis. Thus, an optimal SOS
is achieved in wires grown in the plane of CuPt-structure
atomic layers. This suggests gate-defined wires [88] in
(111) thin films of InAs( 5Sb 5 to be the most advantageous
route to increased stability of MZMs. Additionally, the
confinement of the quantum well in the (111) direction has
a similar effect as strain and can restore the normal band
order for thin quantum wells, as is the case in HgTe
quantum wells [89].

To give a rough estimate for the realistic value of a TSC
gap induced in InAs, 5Sb, 5, we used the obtained param-
eters in the effective model analysis of Ref. [90] to calculate
the disorder renormalized quasiparticle gap E; in the TSC
state. The gap values A, in the adjacent bulk supercon-
ductor are taken to be 2 K for Al and 15 K for Nb. In
Fig. 6(b) E, is plotted as a function of the mobility y, and
Table II lists values of E, assuming Al as the bulk

superconductor and a mobility of u = 10° cm?/Vs.
Even with this moderate electron mobility, E, is almost
an order of magnitude larger in InAs,sSby s than what is
currently achievable in pure InSb [27].

Finally, we considered other III-V alloys, for which CuPt
ordering was reported in Ref. [38]. We found that

InP, sSby 5 and GaAs 5Sby 5 realize the novel TSM phase

(@) B (meV) — 2% Al 3% Al
- - 2%, Nb 3%, Nb |
N Ego~24 meV = ==
-0.10 -0.05 0.00 0.05 0.10 é 6 é 10

k(AT

FIG. 6. (a) Conduction bands of —3% strained InAs;sSby s
plotted in the (110) direction. (b) Disorder renormalized quasi-
particle gap E, in the TSC state as a function of the mobility
plotted for 2% and 3% strain for a (110) wire in proximity to Al
or Nb.
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reported above for InAsjsSbys. Of the compounds with
normal band ordering, Alys;GaysAs and AlysIngsSb
exhibit the largest values of Egq, which is small compared
to InAs,sSby 5, being of the order 0.1 meV [51].
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