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We systematically generalize the exotic 3He-B phase, which not only exhibits unconventional symmetry
but is also isotropic and topologically nontrivial, to arbitrary partial-wave channels with multicomponent
fermions. The concrete example with four-component fermions is illustrated including the isotropic f-, p-,
and d-wave pairings in the spin septet, triplet, and quintet channels, respectively. The odd partial-wave
channel pairings are topologically nontrivial, while pairings in even partial-wave channels are topologically
trivial. The topological index reaches the largest value ofN2 in the p-wave channel (N is half of the fermion
component number). The surface spectra exhibit multiple linear and even high order Dirac cones.
Applications to multiorbital condensed matter systems and multicomponent ultracold large spin fermion
systems are discussed.
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Superconductivity and paired superfluidity of neutral
fermions possessing unconventional symmetries are among
the central topics of condensed matter physics. If Cooper
pairs formed by spin-1

2
fermions carry nonzero spin, their

orbital symmetries are usually in the odd partial-wave
channels, except in the case of odd-frequency pairings
[1,2]. The p-wave paired superfluidity [3,4] includes the
3He A phase exhibiting point nodes [5], the fully gapped B
phase [6], and the recently reported polar state with linear
nodes [7,8]. The p-wave superconductivity has also been
extensively investigated in heavy fermion systems including
UGe2, URhGe, UCoGe [9]. The p-wave superfluid 3He and
superconductors exhibit rich topological structures of vor-
tices and spin textures under rotations or in external magnetic
fields, respectively [10,11]. In addition, experimental sig-
natures of the possible nodal f-wave superconductivity have
also been reported in UPt3 [12,13].
Among unconventional pairing phases, the pairing struc-

ture of the 3He-B phase is distinct. In spite of its non-s-wave
symmetry and nontrivial spin configuration, the overall
pairing structure remains isotropic: It is invariant under
the combined spatial and spin rotations carrying total angular
momentum zero. It shows the relative spin-orbit symmetry
breaking from SOLð3Þ ⊗ SOSð3Þ to SOJð3Þ [3] where L, S,
and J represent the orbital, spin, and total angular momen-
tum, respectively. The relative spin-orbit symmetry breaking
has also been studied in the context of Pomeranchuk
instability termed as unconventional magnetism leading to
the dynamic generation of spin-orbit coupling [14,15].
Furthermore, the 3He-B phase possesses nontrivial topo-

logical properties [16–18]. Topological states of matter have
become a major research focus since the discovery of the
integer quantum Hall effect [19–21]. Recently, the study of
topological band structures has extended from time-reversal
(TR) breaking systems to TR invariant systems [22–24],

from two to three dimensions [17,25,26], and from insulators
to superconductors [16–18,27–30]. The 3He-B phase is a 3D
TR invariant topological Cooper pairing state. Its bulk
Bogoliubov spectra are analogous to the 3D gapped Dirac
fermions belonging to the DIII class characterized by an
integer-valued index [17]. The nontrivial bulk topology gives
rise to the gapless surface Dirac spectra of the midgap
Andreev-Majorana modes [31]. Evidence of these low
energy states has been reported in recent experiments [32].
Because the electron Cooper pair can only be either spin

singlet or triplet, the p-wave 3He-B phase looks like the only
choice of the unconventional 3D isotropic pairing state. In
this Letter, we will show that actually there are much richer
possibilities of this exotic class of pairing in all the partial-
wave channels of L ≥ 1. We consider multicomponent
fermions in both orbital-active solid state systems and
ultracold atomic systems with large spin alkali and alka-
line-earth fermions, both of which have recently attracted a
great deal of attention [33–41]. For simplicity, below we
introduce an effective spin s to describe the multicomponent
fermion systems with the component number expressed as
2N ¼ 2sþ 1 ≥ 4. Compared with the 2-component case,
their Cooper pair spin structures are greatly enriched [34,42].
For example, the 4-component spin-3

2
systems can support

the f-wave septet, p-wave triplet, and d-wave quintet
pairings, all of which are fully gapped and rotationally
invariant. Nevertheless, only the odd partial-wave channel
ones, i.e., the p- and f-wave pairings, are topologically
nontrivial. Their topological properties are analyzed both
from calculating the bulk indices and surface Dirac cones of
the Andreev-Majorana modes. For the p-wave case, the
topological indices from all the helicity channels add up
leading to a large value of N2. Correspondingly the surface
spectra exhibit the coexistence of 2D Dirac cones of all the
orders from 1 to 2N − 1.
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We begin with an f-wave spin septet Cooper pairing
Hamiltonian in a 3D isotropic system of spin-3

2
fermions

H ¼
X
~k

ϵ~kc
†
αð~kÞcαð~kÞ −

g
V0

X
~k;~k0;m;ν

P†
m;νð~kÞPm;νð~k0Þ; ð1Þ

in which ϵ~k ¼ ðℏ2k2=2mÞ − μ and μ is the chemical
potential. α ¼ � 3

2
;� 1

2
is the spin index, g is the

pairing interaction strength, and V0 is the system

volume. The pairing operator is defined as P†
m;νð~kÞ ¼

c†αð~kÞY3mðk̂Þ½S3νR�αβc†βð−~kÞ where k̂ ¼ ~k=k, Y3mðk̂Þ’s with
−3 ≤ m ≤ 3 are the third order spherical harmonic func-
tions, and S3ν with −3 ≤ ν ≤ 3 are the rank-3 spherical

tensors based on the spin operator ~S in the spin 3
2
-

representation, where ν is the eigenvalue of Sz. For later
convenience, Y3mðk̂Þ are normalized according toP

mjY3mðk̂Þj2 ¼ 1. R is the charge conjugation matrix

defined as Rαβ ¼ ð−Þαþ1
2δα;−β satisfying R~STR−1 ¼ −~S

such that Rαβc
†
β transforms in the same way under rotation

as cα does. The expressions for spherical harmonic func-
tions and spin tensors are presented in the Supplemental
Material I of [43].
After the mean-field decomposition, Eq. (1) becomes

HMF

V
¼ 1

V

X0

~k

Ψ†ð~kÞHð~kÞΨð~kÞ þ g
X
m;ν

Δ�
m;νΔm;ν; ð2Þ

in which ~k is summed over half of momentum space;
Ψð~kÞ ¼ ðc~k;α; c†−~k;αÞ

T is the Nambu spinor; the order
parameter Δm;ν is defined through the self-consistent
equation as

Δm;ν ¼
g
V

X
~k

hGjcγð−~kÞY�
3mð~kÞR†S3ν;†cδð~kÞjGi ð3Þ

with hGj…jGi meaning the ground state average.
The matrix kernel Hð~kÞ in Eq. (2) is expressed as

Hð~kÞ ¼ ϵð~kÞτ3 ⊗ I4×4 þ Δ̂ð~kÞτþ þ Δ̂ð−~kÞτ−; ð4Þ
where τ3 and τ� ¼ 1

2
ðτ1 � iτ2Þ are the Pauli matrices acting

in the Nambu space. Δ̂ð~kÞ is defined in the matrix form in
spin space as

Δ̂ð~kÞ ¼
X
ν

ðS3νRÞd�;νð~kÞ; ð5Þ

where d�;νð~kÞ ¼ Δm;νY3mðk̂Þ and is dubbed as the d tensor
in analogy to the d vector in 3He. The usual d vector is
represented in its three Cartesian components, while here,
the d tensor is a rank-3 complex spherical tensor.
We consider the isotropic pairing with total angular

momentum J ¼ 0, which is a generalization of the p-wave
3He-B phase. Similarly, it is fully gapped, and thus
conceivably energetically favorable within the mean-field
theory. Its dνð~kÞ can be parametrized as dνð~kÞ ¼ cfΔf

ðk=kfÞ3Y3νðk̂Þ, where cf is an overall normalization factor
given in Supplemental Material II of [43], Δf is the
complex gap magnitude, or, equivalently,

Δ̂ð~kÞ ¼ Δfð
k
kf
Þ3Kfðk̂ÞR ð6Þ

in which Kf ¼ cfUðk̂ÞS30U†ðk̂Þ; Uðk̂Þ rotates the z axis
to k̂ as defined in the following gauge Uðk̂Þ ¼ e−iϕksze−iθksy

in which θk and ϕk are polar and azimuthal angles of k̂,
respectively. The explicit form of Δ̂ðk̂Þ and the corresponding
spontaneous symmetry-breaking pattern are presented in the
Supplemental Material II and III of [43], respectively. The
pairingmatrixKfðk̂Þ and that of the isotropic p-wave pairing
Kpðk̂Þ are depicted in Figs. 1(a) and 1(b), respectively.
With the help of the helicity operator hðk̂Þ ¼ k̂ · ~S, Kfðk̂Þ

can be further expressed in an explicitly rotational invariant
form as

Kfðk̂Þ ¼ −
5

2
h3ðk̂Þ þ 41

8
hðk̂Þ; ð7Þ

which is diagonalized as U†ð~kÞKfðk̂ÞUðk̂Þ ¼ ½− 5
2
S3zþ

ð41=8ÞSz�. For a helicity eigenstate with the eigenvalue
λ, the corresponding eigenvalue ξλ of Kfðk̂Þ reads
ξλ ¼ − 3

4
; 9
4
;− 9

4
; 3
4

for λ ¼ 3
2
; 1
2
;− 1

2
;− 3

2
, respectively.

The Bogoliubov quasiparticle spectra are Eλð~kÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ð~kÞ þ jΔfj2ðk=kfÞ6ξ2λ

q
satisfying Eλð~kÞ ¼ E−λð~kÞ due

to the parity symmetry.
Next we study the pairing topological structure. The

pairing Hamiltonian Eq. (4) in the Bogoliubov–de Gennes
(B-deG) formalism possesses the particle-hole symmetry

CpHð~kÞC−1
p ¼ −H�ð−~kÞ with Cp ¼ τ1 ⊗ I4. Furthermore,

the isotropic pairing state described by Eq. (6) is

TR invariant satisfying CTHð~kÞC−1
T ¼ H�ð−~kÞ with

CT ¼ I2 ⊗ R, and thus it belongs to the DIII class.
The associated topological index is integer valued
which will be calculated following the method in

Ref. [30]. Hð~kÞ is transformed with only two off-diagonal

blocks as ϵð~kÞτ1 þ Δfðk=kfÞ3Kðk̂Þτ2. The singular-value-
decomposition to its up-right block yields Uðk̂ÞLðkÞΛ
ðkÞU†ðk̂Þ, in which LðkÞ and ΛðkÞ are two diagonal
matrices only dependent on the magnitude of k defined
as LλλðkÞ ¼ EλðkÞ and ΛλλðkÞ ¼ eiθλðkÞ, respectively.

The angles satisfy tan θλð~kÞ ¼ −ðΔfξλ=ϵ~kÞðk=kfÞ3 and
for simplicity Δf is set as positive. The k3 dependence
of the pairing amplitude is regularized: Beyond a cutoff kc,
Δf vanishes.
The topological index is calculated through the SU(4)

matrix Q~k ¼ Uðk̂ÞΛðkÞU†ðk̂Þ as
Nw ¼ 1

24π2

Z
d3~kϵijlTr½Q†

~k
∂iQ~kQ

†
~k
∂jQ~kQ

†
~k
∂lQ~k�; ð8Þ
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which is integer valued characterizing the homotopic class
of the mapping, i.e., π3(SUð4Þ) ¼ Z. Nevertheless, Nw is
only well defined up to a sign: After changing Δf → −Δf,
Nw flips the sign. As shown in the Supplemental Material
IV of [43], at μ > 0 Nw is evaluated as

Nw ¼
X

λ¼�3
2
;�1

2

λsgnðξλÞ: ð9Þ

Its dependence on sgnðξλÞ is because θλð~kÞ varies from
0 → π

2
→ π at ξλ > 0 but from π → π

2
→ 0 as k varies from 0

to kf to þ∞. A similar form of Eq. (9) was obtained in
Ref. [30] in which the Fermi surface Chern number plays
the role of λ in Eq. (9). For two helicity pairs of λ ¼ � 3

2
and

λ ¼ � 1
2
, their contributions are with opposite signs, and

thus Nw ¼ 2.
The nontrivial bulk topology gives rise to gapless surface

Dirac cones. Because of the pairing isotropy, without loss
of generality, an open planar boundary is chosen at z ¼ 0
with μðzÞ ¼ ϵf > 0 at z < 0 and −∞ at z > 0. The mean-
field Hamiltonian becomes Hð~k∥; zÞ in which ~k∥ ¼ ðkx; kyÞ
remains conserved while the translation symmetry along
the z axis is broken. The symmetry on the boundary is
Cv∞ including the uniaxial rotation around the z axis and
the reflection with respect to any vertical plane. Cv∞ is also
the little group symmetry at ~k∥ ¼ 0, then the four zero
Andreev-Majorana modes at ~k∥ ¼ 0 are sz eigenstates
denoted as j0α;fi. The associated creation operators γ†α
are solved as

γ†α ¼
Z

0

−∞
dz½eiðφ2þπ

4
Þc†αð~k∥ ¼ 0; zÞ

þ e−ið
φ
2
þπ

4
Þc−αð~k∥ ¼ 0; zÞ�uαðzÞ; ð10Þ

where φ is the phase of Δ; uf;αðzÞ is the zero mode wave
function exponentially decaying along the z axis, and its
expression is presented in the Supplemental Material V
of [43].

The surface zero modes j0α;fi at ~k∥ ¼ 0 possess an
important property that the gapped bulk modes do not
have: They are chiral eigenmodes satisfying Cchj0α;fi ¼
ð−Þνα j0α;fi with να ¼ 0 for α ¼ 3

2
;− 1

2
and να ¼ 1 for

α ¼ 1
2
;− 3

2
, respectively, in which the chiral operator is

defined as Cch ¼ iCpCT ¼ iτ1 ⊗ R. The mean-field

Hamiltonian Hð~k∥; zÞ is in the DIII class satisfying the
particle-hole and TR symmetries, and it transforms as

CchHð~k∥; zÞC−1
ch ¼ −Hð~k∥; zÞ. Thus Cch is a symmetry

only for zero modes. For a nonzero mode jψni and its
chiral partner jψ n̄i ¼ Cchjψni, their energies are opposite to
each other, i.e., ϵn̄ ¼ −ϵn. If a perturbation δH remains in
the DIII class, then CchδHC−1

ch ¼ −δH. δH can only mix
two zero modes with opposite chiral indices because
h0α;fjδHj0β;fi ¼ ð−Þναþνβþ1h0α;fjδHj0β;fi, and it is non-
zero only if να ≠ νβ.

As moving away from ~k∥ ¼ 0, the zero modes evolve to
the midgap states developing energy dispersions. At
k∥ ≪ kf, these midgap states can be solved by using the
k · p perturbation theory within the subspace spanned by
the zero modes j0α;fi at ~k∥ ¼ 0. By setting δH ¼
Hð~k∥; zÞ −Hð0; zÞ, the effective Hamiltonian to the linear
order of k∥ is

Hf
midð~k∥Þ ¼

9Δf

4kf

0
BBB@

0 −ik− 0 Oðk3−Þ
ikþ 0 −2ik− 0

0 2ikþ 0 −ik−
Oðk3þÞ 0 ikþ 0

1
CCCA;

ð11Þ
where k� ¼ kx � iky. The matrix elements in the same
chiral sector are exactly zero, and the elements at the
order of Oðk3�Þ are neglected. The solutions consist of
two sets of 2D surface Dirac cone spectra represented by

EaðbÞ
� ð~k∥Þ ¼ �vaðbÞk∥. The velocities are solved as

vaðbÞ ¼ 9
4
ðjΔfj=kfÞð

ffiffiffi
2

p � 1Þ. We also develop a systematic
method beyond the k · p theory to solve the midgap spectra
for all the range of k∥ as presented in the Supplemental
Material VIII of [43], and the results are plotted in Fig. 2(a).
In addition to the Dirac cones, there also exists an addi-
tional zero energy ring not captured by Eq. (11), which is
located at k=kf ¼ ð ffiffiffi

3
p

=2Þ as analyzed in the Supplemental
Material V of [43].
Now we move to other unconventional isotropic pairings

of spin-3
2

fermions in the p- and d-wave channels.
The p-wave triplet one is topologically nontrivial, and
the analysis can be performed in the same way as above.

The pairing matrix is Δ̂pð~kÞ ¼
P

ν¼0;�1ðS1νRÞd�;νp ð~kÞ ¼
Δpðk=kfÞKpðk̂ÞR, where S1ν is the rank-1 spin tensor,

dνp ¼ Δpðk=kfÞY1νðk̂Þ, and Kpðk̂Þ ¼ k̂ · ~S is just the hel-
icity operator. The quasiparticle spectra are fully gapped

FIG. 1. Pictorial representations of the pairing matrices over the
Fermi surfaces of (a) the isotropic f-wave septet pairing and
(b) the isotropic p-wave triplet pairing with spin-3

2
fermions.

Intuitively, the f-wave matrix kernels Uðk̂ÞS30U†ðk̂Þ and the p-
wave ones Uðk̂ÞS10U†ðk̂Þ for each wave vector ~k are depicted in
their orbital counterpart harmonic functions in (a) and (b),
respectively.
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as Eλð~kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ð~kÞ þ jΔpj2ðk=kfÞ2λ2

q
, and the topological

index of this pairing can be evaluated based on Eq. (9) by
replacing the eigenvalues of Kfðk̂Þ with those of Kpðk̂Þ.
The contributions from two helicity pairs of λ ¼ � 3

2
and

� 1
2
add up leading to a high value Nw ¼ 4. In comparison,

the topological index of the 3He-B phase is only 1, and thus
their topological sectors are different in spite of the same
pairing symmetry.
The surface spectra of the isotropic p-wave pairing with

spin-3
2
fermions are interesting: They exhibit a cubic Dirac

cone in addition to a linear one. Consider the same planar
boundary configuration as before, similarly for each spin

component α there exists one zero mode at ~k∥ ¼ 0 labeled
by j0α;pi. Again we perform the k · p analysis at k∥ ≪ kf in
the subspace spanned by j0α;pi with respect to δH ¼
Hð~k∥; zÞ −Hð0; zÞ. The chiral eigenvalue of j0α;pi is
ð−Þνα ¼ sgnðαÞ, which leads to a different structure of
effective Hamiltonian from that of the f-wave one. Only
j0�1

2
;pi can be directly coupled by δH, which leads to a

linear Dirac cone. In contrast, the pair of states j0�3
2
;pi are

not directly coupled, rather j03
2
;pi and j0−1

2
;pi are coupled

through the second order perturbation theory, and so are
j0−3

2
;pi and j01

2
;pi. Consequently, j0�3

2
;pi are coupled at the

order of ðδHÞ3 developing a cubic Dirac cone as shown in
the Supplemental Material VII of [43]. The above analysis
is confirmed by the solution based on the nonperturbative
method in the Supplemental Material VIII of [43] as plotted
in Fig. 2(b).
In contrast, the d-wave spin quintet isotropic pairing of

spin-3
2
fermions is topologically trivial. By imitating the

analyses above, we replace Kfðk̂Þwith Kdðk̂Þ ¼ 2ðk̂ · ~SÞ2−
5
2
I4. Different from the kernels Kp and Kf in odd partial-

wave channels, Kd’s eigenvalues are even with respect to
the helicity index, i.e., ξdλ ¼ ξd−λ, such that Nw vanishes.
This result agrees with the fact that 3D TR invariant
topological superconductors should be parity odd as shown

in Ref. [44]. The explicit calculation of the surface spectra
in the Supplemental Material VII of [43] confirms this point
showing the absence of zero modes.
The above analysis can be straightforwardly applied to

multicomponent fermion systems with a general spin value
s ¼ N − 1

2
. The spin tensors at the order of l are denoted as

Slm with 0 ≤ l ≤ 2S and −l ≤ m ≤ l. For each partial-wave
channel 0 ≤ l ≤ 2S, there exists an isotropic pairing with
the pairing matrix Δ̂ðk̂Þ ¼ Δlðk=kfÞlKlðk̂ÞR in which
Kl ¼ Uðk̂ÞSl0U†ðk̂Þ, whose topological index NwðlÞ is
determined by the sign pattern of the elements of the
diagonal matrix Sl0. For even and odd values of l,
Sl0αα ¼ �Sl0−α−α, respectively, and thus Nl

w vanishes when
l is even, while for odd values of l,

NwðlÞ ¼
X
λ>0

2λsgnðSl0λλÞ; ð12Þ

in which Sl0αα ¼ ð−Þαþ1
2hSα; S − αjSS; l0i up to an overall

factor. The largest value of Nw is reached for the p-wave
case: Since S10 ∝ Sz, contributions from all the components
add together leading to Nw ¼ N2. The 3He-B phase of
spin-1

2
fermions and the isotropic p-wave pairing with

spin-3
2
fermions are two examples. As for the surface zero

modes j0α;pi at ~k∥ ¼ 0, their chiral indices equal sgnðαÞ. As
a result, similar to the spin-3

2
case, when performing the k · p

analysis for midgap states within the subspace spanned by
j0α;pi, only j0�1

2
;pi are directly coupled leading to a linear

Dirac cone, and other pairs of j0�α;pi are indirectly coupled
at the order of ðδHÞ2α leading to high order Dirac cones.
Multicomponent fermion systems are not rare in nature.

In solid state systems, many materials are orbital active
including semiconductors, transition metal oxides, and
heavy fermion systems. Because of spin-orbit coupling,
their band structures are denoted by electron total angular
momentum j and in many situations j > 1

2
. For example, in

the hole-doped semiconductors, the valence band carries
j ¼ 3

2
as described by the Luttinger model [45].

Superconductivity has been discovered in these systems
including hole-doped diamond and Germanium [46–48].
Although in these materials, the Cooper pairings are mostly
of the conventional s-wave symmetry arising from the
electron-phonon interaction, it is natural to further consider
unconventional pairing states in systems with similar band
structures but stronger correlation effects. The p-wave
pairing based on the Luttinger model has been studied
in Ref. [40]. In ultracold atom systems, many alkali and
alkaline-earth fermions often carry large hyperfine spin
values F > 1

2
, and thus their Cooper pair spin structures are

enriched taking values from 0 to 2F not just singlet and
triplet as in the spin-1

2
case [34,36,42].

In multicomponent solid state systems, there often exists
spin-orbit coupling. For example, the Luttinger model
describing hole-doped semiconductors [45], contains an

FIG. 2. The gapless surface spectra for the isotropic f-wave
septet pairing in (a) and for the isotropic p-wave triplet pairing in
(b) with spin-3

2
fermions.
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isotropic spin-orbit coupling Hso ¼ γ2k2ðk̂ · ~SÞ2. Since Hso
is diagonalized in the helicity eigenbasis, we only need
to update the kinetic energy with ϵkλ ¼ ϵk þ γk2λ2 in the
mean-field analysis, which satisfies ϵkλ ¼ ϵk;−λ, and
the pairing structure described by Eq. (6) is not affected.
The topological properties are the same as analyzed before
because the index formula Eq. (9) remains valid and the
surface midgap state calculation can be performed quali-
tatively similarly. Nevertheless, the symmetry-breaking
pattern is changed. The relative spin-orbit symmetry is
already explicitly broken by the Hso. The spin-orbit
coupled Goldstone modes in 3He-B become gapped
pseudo-Goldstone modes with the gap proportional to
the spin-orbit coupling strength γ2.
In summary, we have found that multicomponent fer-

mion systems can support a class of exotic isotropic pairing
states analogous to the 3He-B phase with unconventional
pairing symmetries and nontrivial topological structures.
High-rank spin tensors are entangled with orbital partial
waves at the same order to form isotropic gap functions. For
the spin-3

2
case, the odd partial-wave channel pairings carry

topological indices 2 and 4 for the f- and p-wave pairings,
respectively, while the d-wave channel pairing is topologi-
cally trivial. The surface Dirac cones of midgap modes are
solved analytically which exhibit two linear Dirac cones in
the f-wave case, and the coexistence of linear and cubic
Dirac cones in the p-wave case. Generalizations to systems
with even more fermion components can be performed
straightforwardly. This work provides important guidance
in the search for novel nontrivial topological pairing states
in both condensed matter and ultracold atom systems.
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Note added.—Recently, evidence for the septet pairing with
spin-3

2
fermions was reported in the rare earth-based half-

Heusler superconductors [49].
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