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Many topological phenomena first proposed and observed in the context of electrons in solids have
recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-
Abelian Berry phases can arise when coherent states of light are injected into “topological guided modes”
in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero
modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can
be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the
guided beams are wound around one another. Notably, these effects survive the limit of large photon
occupation, and can thus also be understood as wave phenomena arising directly from Maxwell’s
equations, without resorting to the quantization of light. We propose an optical interference experiment as a
direct probe of this non-Abelian braiding of light.
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Manifestations of topology in physical systems, specifi-
cally in the form of so-called geometric phases [1,2], have
risen to prominence over the last three decades. Geometric
phases were shown by Berry to arise in quantum systems
under cyclic adiabatic variation of parameters [2], but it was
later understood [3] that this phase had been discovered
thirty years earlier in the context of classical optics by
Pancharatnam [1]. The close analogy between quantum
mechanics and classical optics has remained over the years,
and many of the striking topological states of matter
associated with electrons in solids, such as topological
insulators and semimetals [4], have recently found counter-
parts in photonic [5–13] and acoustic [14–19] systems. The
present work aims to further highlight and deepen the
connection between topological phenomena in solids and
in classical wave mechanics by demonstrating a new facet
to this correspondence. We demonstrate the existence of a
classical analogue of the non-Abelian Berry phase [20] that
arises from “braiding” topological defects in solids.
One route to non-Abelian Berry phases in electronic

systems lies in the remarkable physics of zero modes. As
was pointed out in pioneeringwork by JackiwwithRebbi [21]
and Rossi [22], localized zero-energy fermionic states can
bind to topological defects in an order parameter, such as
kinks in one dimension and vortices in two dimensions. In
systems where electric charge is a good quantum number,
these zero modes carry charges that are fractions of the
“fundamental” electron charge [21,23,24]. In chiral super-
conductors, where charge conservation is broken, these
localized modes are Majorana bound states with non-
Abelian statistics [22,25–27]. At the mean-field level, where
interactions between electrons are neglected, this non-Abelian
statistics can be understood in terms of the accumulation of
non-Abelian Berry phases as defects are adiabatically
exchanged with one another [28]. The non-Abelian nature

of this process manifests itself in the dependence of these
phases on the order in which the defects are interchanged, in
contrast to the usual “Abelian” Berry phase.
In this Letter, we propose a novel means of realizing

topological zero modes in photonic rather than electronic
systems, and of demonstrating their non-Abelian braiding
directly. The proposed realization consists of noninteract-
ing photons propagating in the nontrivial background of a
photonic lattice with topological defects whose positions
are controllable. Light channeled into “topological guided
modes” localized at these defects can be braided, leading to
the accumulation of non-Abelian phases that depend on the
order in which the braids occur. We demonstrate that this
effect manifests itself at both the quantum and classical
levels, owing to the linearity of the equations of motion for
noninteracting light.
The zero modes we propose to realize are photonic

analogues of Kekulé zero modes in graphene [24], which
are bound to vortices in the complex order parameter ΔðrÞ
describing a dimerization pattern in the hexagonal lattice
(Fig. 1). The translation between electrons and photons is
achieved by replacing the sites of the lattice with wave-
guides embedded in a bulk optical medium (e.g., fused
silica) [29], which are extended in the z direction and
whose x-y positions mimic the 2D positions of the carbon
atoms in the distorted graphene lattice. The wave equation
for the paraxial propagation of light in such a waveguide
array maps directly onto the time-dependent Schrödinger
equation (SE), where the time coordinate t in the SE is
replaced by the coordinate z along the direction of light
propagation. This wave equation can be further mapped,
using coupled mode theory [30], to a linear differential
equation that is in one-to-one correspondence with the
noninteracting tight-binding model of the electronic sys-
tem. The waveguides themselves can therefore be thought
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of as the world lines of the carbon atoms, with straight
waveguides corresponding to a lattice that is static in time.
Waveguide arrays of this type have been realized, written

into bulk materials with exquisite precision using femto-
second lasers [31] (see Ref. [29] for a review). They have
been used to mimic graphene and other electronic systems
with both static lattices [5,32–34] and ones that change as a
function of time [10,11]. The experimental protocol sug-
gested here hinges on this capability to execute a braiding
procedure in which three vortices are wound around one
another. As we show below, a protocol can be chosen that
reveals the non-Abelian nature of the braiding directly via
interference between different braiding patterns.
Our starting point is the coupled-mode equation for

paraxial light propagation through the waveguide array,

i∂zψ rðzÞ ¼
X3
j¼1

Hr;r�sjψ r�sjðzÞ: ð1Þ

Here, the vector r is defined on a hexagonal lattice divided
into two triangular sublattices that we call A and B. The
vectors þsj (j ¼ 1,2,3) connect the point r in sublattice A
to its three nearest neighbors in sublattice B, located a
distance a away, and −sj connect points in B to their
neighbors in A. For simplicity, we assume the light in the
array to be monochromatic, so that Eq. (1) is frequency
independent. Equation (1) is formally identical to a non-
interacting tight-binding model in which the time coor-
dinate t has been replaced by the longitudinal coordinate z.
Its solutions can be decomposed into eigenmodes
ψν;rðzÞ ¼ ψν;re−iκνz, where ν ¼ 0;…; 2N − 1, with N the
number of unit cells in the waveguide array, labels the
“energy eigenvalues” κν. The “wave function” ψ rðzÞ in

Eq. (1) is related to the amplitude of the local electric field
Erðz; tÞ on the “site” r. It is useful to work with the
quantized electric field operator [35]

Êrðz; tÞ ¼
X
ν

ψν;rei½ðkω−κνÞz−ωt�b̂νnþ H:c:; ð2Þ

where n is a unit vector in the x-y plane describing the
polarization of the field and kω satisfies the dispersion
relation of a single waveguide. The ladder operators b̂ν
satisfy the bosonic commutation relations ½b̂ν; b̂†ν0 � ¼ δν;ν0 .
(See Supplemental Material for details on the quantization
procedure [36].)
The “Hamiltonian” in Eq. (1) depends exponentially on

distances between nearest-neighbor waveguides (we
neglect longer-range couplings for the moment). We take
Hr;rþsj ¼ −t − δtr;j, where δtr;j ¼ ΔðrÞeiKþ·sje2iKþ·r=2þ
c:c. (we denote by K� the locations of the two inequivalent
Dirac points, at opposite corners of the hexagonal Brillouin
zone). Here, the parameter t describes the evanescent
couplings of the waveguides, and the position-dependent
function δtr;j describes modulations of these couplings due
to displacements of the waveguides from their original x-y
positions. The complex-valued Kekulé order parameter
ΔðrÞ controls the distortion of the lattice [24]. A vortex
in ΔðrÞ is a defect in this distortion pattern, but not the
lattice itself. The order parameter in the presence of a single
vortex centered at the origin reads ΔðrÞ ¼ Δ0ðrÞeiðα−θÞ in
polar coordinates r ¼ ðr; θÞ. Here, Δ0ðrÞ ¼ Δ tanhðr=l0Þ
describes the spatial profile of the vortex, which has a core
radius l0, and α is the phase of the order parameter.
The zeromode in the presence of this vortex profile can be

found by setting the left-hand side of Eq. (1) to zero and
solving for ψ r. The zero-mode solution is tightly localized
near the core of the vortex, with a size of order 1=Δ, and has
support on sublattice A only [see Fig. 1(b)]. [If we send
θ → −θ in ΔðrÞ, the zero mode has support on sublattice B
instead. [24]]. This means that light propagating in the zero
mode travels as if confined to an “optical fiber” located at the
vortex core, albeit with evanescent decay into neighboring
waveguides in the same sublattice. However, the zero mode
differs crucially from a mode in an optical fiber, both
because it takes the distortion of an entire waveguide lattice
to create, and because it depends on the topological nature of
this distortion. These topological guided modes are respon-
sible for the non-Abelian effects described below.
The above discussion neglects the presence of various

lattice effects that can shift the zero mode eigenvalue to a
finite momentum. In principle, this makes possible the
accumulation of path-dependent (i.e., nontopological)
dynamical phases during braiding. However, as we show
in detail in the Supplemental Material, these effects can be
neglected to reasonable precision without fine-tuning.
There, we estimate (conservatively) that we can perform
thousands of braids before the effects of dynamical phases
begin to manifest themselves.

FIG. 1. (a) Uniform Kekulé distortion in a hexagonal wave-
guide lattice at a slice of constant z. The faint circles represent the
original hexagonal lattice, while darker circles represent the
distorted lattice. Sublattice A is colored red, while sublattice B
is colored blue. The overlaid vector field represents the magni-
tude and direction of the order parameterΔðrÞ. The background is
an image of a low-lying eigenmode of Eq. (1). The intensity
pattern represents the amplitude of the electric field in each
waveguide. (b) Waveguide lattice in the presence of a vortex in
the Kekulé pattern, with an overlaid order-parameter vector field
showing circulation around the vortex core. The background is an
intensity plot of the localized zero-mode wave function. We have
chosen a vortex profile in which only sublattice A is displaced.
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To facilitate our discussion of the non-Abelian braiding
of vortices like the one above, we work in the continuum
limit, where the analytical form of the vortex wave function
is known. (Exact diagonalization calculations corroborat-
ing these results are reviewed in the Supplemental Material
[36].) On length scales much longer than a, the operator
that annihilates a photon in the zero mode is

b̂0 ¼
Z

dr½uðrÞb̂þðrÞ þ u�ðrÞb̂−ðrÞ�; ð3Þ

where b̂�ðrÞ annihilate a photon at the Dirac points
K�. (These operators are assumed to be normalized such
that the canonical commutation relation ½b̂0; b̂†0� ¼ 1 holds.)
The function uðrÞ≡ uðrÞ is given, up to normalization,
by [24]

uðrÞ ¼ eiðα=2þπ=4Þe−
R

r

0
dr0Δ0ðr0Þ: ð4Þ

Note that the zero mode amplitude uðrÞ is double valued:
when α, the phase of the order parameter ΔðrÞ, changes by
2π, uðrÞ acquires a minus sign. The origin of this double
valuedness lies in the fact that uðrÞ is a solution to the Dirac
equation, and therefore must transform as a spinor under
changes in α.
The quantum states created by b̂†0 can be connected to the

macroscopic state of light in the waveguide array by
defining the coherent state

jλi ¼ e−jλj2=2eλb̂
†
0 j0i; ð5Þ

with mean photon number hb̂†0b̂0i ¼ jλj2. These states
provide a faithful description of the electric field in the
waveguide array in the large-jλj limit when the input light is
a coherent, monochromatic laser spot centered on the
vortex core. In this case, the contribution of the photonic
zero mode to the classical electric field is given by
[cf. Eq. (2)]

E0;rðz; tÞ ¼ λuðrÞeiðKþ·rþkωz−ωtÞnþ c:c:; ð6Þ
with uðrÞ given in Eq. (4) and λ defined by Eq. (5). The
ease with which one can translate between the quantum and
classical descriptions of the waveguide array owes to the
fact that photons in the array are noninteracting. Indeed, an
alternative way of deriving Eq. (6) is to solve Maxwell’s
equations directly in the presence of a vortex.
Let us now study the braiding of zero modes in an

infinite system with v vortices at z-dependent positions
RiðzÞ (i ¼ 1;…; v). The order parameter in the presence of
this vortex configuration is given by

ΔðrÞ ¼ Δ
Yn
j¼1

tanhðjr − Rjj=l0Þei½αj−argðr−RjÞ�; ð7Þ

and the zero-mode Hilbert space is spanned by the
operators b̂†0;i. A clockwise adiabatic exchange of vortices

i and iþ 1 is implemented by winding the vortex-core
coordinates RiðzÞ and Riþ1ðzÞ around one another as
functions of increasing z (see, e.g., the braids in Fig. 2).
In the Supplemental Material [36], we show that the
nontrivial nature of this winding process stems from the
double valuedness of uðrÞ under α → α − 2π. (We verified
this statement for the zero-mode wave function on the
lattice via a numerical tight-binding calculation, as we
describe in the Supplemental Material [36].) The effect of
this exchange, up to a gauge choice, is to map b̂†0;i → b̂†0;iþ1

and b̂†0;iþ1 → −b̂†0;i while leaving all other vortex operators
unchanged, similarly to the case of Majorana [26] and
Dirac zero modes [37] in electronic systems. The operator
that implements this exchange is

τ̂i ¼ eπðb̂
†
0;iþ1

b̂0;i−b̂
†
0;ib̂0;iþ1Þ=2: ð8Þ

One verifies by direct calculation that these operators
satisfy ½τ̂i; τ̂j� ¼ 0 for ji − jj > 1 and τ̂iτ̂jτ̂i ¼ τ̂jτ̂iτ̂j for
ji − jj ¼ 1, and, therefore, form a unitary representation of
Bv, the braid group on v strands [38]. The action of these
generators on a state

jn1;…; nvi ¼
Yv
i¼1

ðb̂†0;iÞniffiffiffiffiffiffi
ni!

p j0i; ð9Þ

representing a system with v vortices, each with a fixed
number of photons, is given by

FIG. 2. Schematic of the proposed photonic non-Abelian
interferometer. A coherent laser beam (one of three, one for
each vortex in a lattice) passes through a 50=50 beam splitter
(blue) and simultaneously enters two separate photonic lattices
fabricated with the two braids to be compared. The two output
beams are reflected by mirrors (gray) into another beam splitter
that interferes the two signals and outputs the sum and difference
to separate screens (black). For the choice of braids used here, one
screen shows a bright and two dark spots, while the other screen
shows the “logical complement” of the first, with one dark and
two bright spots.
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τ̂ij…; ni; niþ1;…i ¼ ð−1Þniþ1 j…; niþ1; ni;…i: ð10Þ

We now explain the consequences of the above phase
factor, which arises purely from braiding the vortices.
Consider the case of two vortices, and the operation of
winding one around the other, which restores them to their
initial locations. We begin by considering (i) an example
where this phase factor does not lead to unitary operations
on a multidimensional space of degenerate states, and then
turn to (ii) an example where it does. For case (i), consider
any eigenstate of occupation number jn1; n2i, which upon
winding goes to the state ð−1Þn1þn2 jn1; n2i; clearly, the
initial and final states are equal up to a phase, and the
braiding operation acts on a one-dimensional space only. In
contrast, consider case (ii), where we take an initial state
that is not an eigenstate of occupation number, but rather a
superposition of states with occupation 0 and 1, for
example. Then winding takes

j0i þ j1iffiffiffi
2

p ⊗
j0i þ j1iffiffiffi

2
p →

j0i − j1iffiffiffi
2

p ⊗
j0i − j1iffiffiffi

2
p : ð11Þ

Clearly, the initial and final states are different (here, they
are orthogonal). This is a crucial hallmark of the non-
Abelian nature of the action of the braiding generators on
these states. Thus, the essential ingredient necessary for
braiding to connect states in a multidimensional Hilbert
space is that the initial state of the zero mode system
consists of superpositions of states with even and odd
numbers of photons.
Such superpositions do not only exist within the domain

of quantum optics. The coherent states defined in Eq. (5)
consist of a superposition of photon states with all
occupation numbers, and can be created by shining a
coherent laser beam centered on a single vortex core. Let us
now consider a system of v vortices, into each of which is
loaded a coherent state of photons

jλ1;…; λvi ¼
Yv
i¼1

e−jλij2=2eλib̂
†
0;i j0i: ð12Þ

The action of the braiding generators on these states is
found from Eq. (10) to be

τ̂ij…; λi; λiþ1;…i ¼ j…;−λiþ1; λi;…i: ð13Þ
To see that this braiding operation connects quantum states
in a multidimensional space of degenerate states, consider
again the winding of two vortices, which restores their
initial locations. For a coherent state, this operation takes

jλ1; λ2i → j − λ1;−λ2i: ð14Þ
The overlap of these two states is hλ1; λ2j − λ1;−λ2i ¼
e−2ðjλ1j2þjλ2j2Þ, whose magnitude is smaller than 1, indicating
that the states are linearly independent. This demonstrates

that the Hilbert space spanned by the braiding operations is
multidimensional. Moreover, in the limit where a large
number of photons are loaded into the zero modes (large
jλ1;2j, which is to be expected from a laser) the overlap is
exponentially small, and the initial and final states become
orthogonal.
At this point, it is worthwhile to reflect on the significance

of the fact that the effect of braiding the vortices manifests
itself at the level of coherent states, which are essentially
classical. While the braiding of these vortices can be under-
stood at the quantum (i.e., few-photon) level, its effects
permeate the entire zero-mode Hilbert space for arbitrary
occupation numbers.Consequently, the quantumactionof the
braiding generators survives the limit of large occupations, so
that macroscopic effects of this braiding can be seen. In
particular, observe that λi → −λi under a braid corresponds,
in the limit of large jλij, to a change in the sign of the electric
field Ei near the core of the ith vortex [cf. Eq. (6)]. This
observation forms the basis of our discussion below.
We now propose an experiment that could provide direct

and unambiguous evidence for non-Abelian braiding at the
level of coherent states. The photonic non-Abelian inter-
ferometer (PNAI) that we propose, shown in Fig. 2,
consists of two separate photonic lattices, each with three
vortices, with waveguides written into the host medium in
such a way that the vortex cores wind adiabatically around
one another according to a specific pattern. (The adiabatic
condition here corresponds to demanding that any change
in the position of each waveguide as a function of z occurs
on length scales much larger than the inverse photonic band
gap.) In one lattice, the waveguide pattern executes a braid
B̂1B̂2, while in the other the waveguide pattern implements
the braid B̂2B̂1. Interfering the light output from the two
lattices reveals the defining feature of non-Abelian braid-
ing, namely, that performing the same braids in different
orders yields different results. We now proceed through
each stage of the interferometer setup.
We start with the input stage of the PNAI. We assume

that the input light comes from three monochromatic,
coherent laser sources, each focused on the core of a single
vortex so that there is large overlap with the zero modes.
Each of the three input beams is split by a 50=50 dielectric
beam splitter, so that the light entering each vortex core
comes from the same source beam. We will denote the light
entering the upper branch of the interferometer in Fig. 2 as
jλ1; λ2; λ3i, and j~λ1; ~λ2; ~λ3i for the lower branch. (The first
beam splitter enforces the phase relation ~λj ¼ −iλj.)
For the braiding stage of the interferometer, we choose,

for example, B̂1 ¼ τ̂2τ̂1 and B̂2 ¼ τ̂2τ̂
−1
1 τ̂2τ̂

−1
1 (see Fig. 2),

which ensures that the vortices on the output facets of both
lattices are in the same order [39]. In the Supplemental
Material [36], we provide more information about how to
write these braiding patterns into the waveguide array. The
output states from the two braids are
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B̂1B̂2jλ1; λ2; λ3i ¼ j − λ1; λ2;−λ3i ð15Þ
and

B̂2B̂1j~λ1; ~λ2; ~λ3i ¼ j − ~λ1;−~λ2; ~λ3i: ð16Þ
In the final stage of the interferometer, the output beams

from the braiding stage are combined at another beam
splitter. The sign differences between the coherent states
exiting the two branches of the interferometer cause the
light to interfere constructively at one detector and destruc-
tively at the other. Which detector this is for each vortex
depends on the relative signs of λi and ~λi, which in turn
depend on the braids (see Fig. 2, and Supplemental
Material for more details). Since the effects of dynamical
phases can be heavily suppressed in a controlled manner, as
discussed earlier, the only source of this interference is the
noncommutativity of braiding the vortices.
In summary, we have demonstrated in this Letter a means

to realize photonic analogues of topological zero modes in
photonic lattices. We demonstrated that these topological
guided modes can be understood at both the quantum and
classical levels when the photons in the waveguide array are
weakly interacting. We further proposed a photonic non-
Abelian interferometer, feasible with current technology,
to detect unambiguous signatures of the non-Abelian
Berry phases that result from braiding these topological
guided modes.
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