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Most density functionals have been developed by imposing the known exact constraints on the
exchange-correlation energy, or by a fit to a set of properties of selected systems, or by both. However,
accurate modeling of the conventional exchange hole presents a great challenge, due to the delocalization
of the hole. Making use of the property that the hole can be made localized under a general coordinate
transformation, here we derive an exchange hole from the density matrix expansion, while the correlation
part is obtained by imposing the low-density limit constraint. From the hole, a semilocal exchange-
correlation functional is calculated. Our comprehensive test shows that this functional can achieve
remarkable accuracy for diverse properties of molecules, solids, and solid surfaces, substantially improving
upon the nonempirical functionals proposed in recent years. Accurate semilocal functionals based on their
associated holes are physically appealing and practically useful for developing nonlocal functionals.
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Kohn-Sham density functional theory (DFT) [1] is a
mainstream ground-state electronic structure theory, due
to its high computational efficiency and useful accuracy.
In this theory, everything is known, except for the exchange-
correlation energy component, which has to be approxi-
mated as a functional of the electron density. Therefore, the
central task of the theory is to develop a consistently accurate
exchange-correlation functional for wide-ranging problems.
Many density functionals have been proposed [2–18] and
some of them have been widely used in electronic structure
calculations of molecules and solids. Most of these func-
tionals were constructed by imposing exact or nearly exact
energy constraints [7,14–16], or by a fit to a set of properties
[13], or by their combination [8]. Because exchange and
correlation parts have different coordinate [19] and spin [20]
scaling properties, they are usually approximated separately.
We begin with the exchange part. For simplicity, let us

consider a spin-unpolarized system (n↑ ¼ n↓), for which
the exchange energy is defined by

Ex ¼
1

2

Z
d3r

Z
d3r0

nðrÞρxðr; r0Þ
jr0 − rj : ð1Þ

(Atomic units ℏ ¼ e ¼ m ¼ 1 are used.) According to
Eq. (1), the exchange energy is just the electrostatic
interaction of each electron at r with the exchange hole
at r0 surrounding the electron. The hole is conventionally
defined as ρxðr; r0Þ ¼ −jρ1ðr; r0Þj2=2nðrÞ, with ρ1ðr; r0Þ ¼
2
Poccup

i¼1 ψ�
i ðrÞψ iðr0Þ being the first-order reduced density

matrix and ψ i being the occupied Kohn-Sham orbitals. We
can see from Eq. (1) that the exchange energy is determined
by the underlying exchange hole and the electron density
nðrÞ. The exchange hole is physically meaningful.

For example, the system-averaged on-top (jr0 − rj ¼ 0)
exchange hole [21] is proportional to the average electron
density hni, while the latter is an experimental observ-
able [22]. In addition, the hole can be also used to construct
higher-level nonlocal density functionals such as range-
separation functionals [11,23], which are particularly useful
for the calculation of band gap and charge transfer. However,
there is no simple procedure that can exactly extract the hole
from a semilocal energy functional. In most cases, the hole
has to be constructed with a reverse engineering approach
[24–27]. This often introduces additional approximations.
Therefore, it is highly desirable to approximate the exchange
hole directly. The exchange energy functional can be easily
generated from the associated hole.
The exchange hole can be approximated in several ways.

For example, it can be constructed from the cutoff procedure
[2,7,24]. It can be also constructed from simple model
systems [5]. Here an exchange hole is derived from the
density matrix expansion (DME) under a general coordinate
transformation. Unlike the Taylor expansion [27–29], the
hole from the DME is not only correct for small separation
(i.e., jr0 − rj ≈ 0), but also properly converged in the large
separation limit (see discussion below). In particular, it
automatically recovers the exact uniform-gas limit. The
convergence property enables us to obtain the exchange
energy functional, without resorting to any numerical cutoff
procedure [2]. Another advantage of the DME is that the
exchange hole can be made localized with a general
coordinate transformation [21]. This largely reduces the
difficulty in the modeling of the highly nonlocal conven-
tional hole.
The DME was originally introduced by Negele and

Vautherin [30] for the study of nuclear forces. Then it was
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generalized by Scuseria and co-workers [8,31] to calculate
molecular properties, leading to the heavily parametrized
but accurate Voorhis-Scuseria functional [8], with 21 fitting
parameters. This functional was reparametrized by intro-
ducing more parameters by Zhao and Truhlar [13], leading
to M06L, one of the most popular semilocal functionals in
quantum chemistry.
Here we introduce a novel technique in the DME. Our

starting point is the general coordinate transformation
[21,31] ðr; r0Þ → ðrλ;uÞ, where rλ ¼ λrþ ð1 − λÞr0,
u ¼ r0 − r, with λ being a real number between 1=2 and
1. Since the Jacobian of the coordinate transformation is 1,
Eq. (1) can be rewritten as [21]

Ex ¼
1

2

Z
d3rλnðrλÞ

Z
d3u

ρtxðrλ;uÞ
u

; ð2Þ

where ρtxðrλ;uÞ is the transformed exchange hole defined
by ρtxðrλ;uÞ¼−jρt1ðrλ− ð1−λÞu;rλþλuÞj2=2nðrλÞ, with
ρt1ðrλ − ð1 − λÞu; rλ þ λuÞ being the transformed density
matrix. λ ¼ 1 corresponds to the conventional hole, while
λ ¼ 1=2 corresponds to the hole in the center of mass.
Next, we expand the transformed Kohn-Sham single-

particle density matrix about u ¼ 0:

ρt1ðr;uÞ ¼ eu·½−ð1−λÞ∇1þλ∇2�ρt1ðr;uÞju¼0; ð3Þ

where∇1 and∇2 are the gradient operators acting on the first
and second arguments of the transformed density matrix
ρt1ðr;uÞ ¼ ρ1(r − ð1 − λÞu; rþ λu), respectively. For con-
venience, the subscript λ has been dropped from now on.
The Taylor expansion of the density matrix can yield the
correct small-u behavior [27–29], but the large-u limit is
divergent. Here we seek an expansion, which (i) recovers
the exact uniform-gas limit, (ii) recovers the correct small-u
behavior up to second order in u2, and (iii) yields a
converged large-u limit. With these requirements, an
exchange functional that respects the uniform-gas limit
can be calculated from the transformed hole ρtxðr;uÞ by
performing integration over u in Eq. (2). To achieve this
goal, we introduce a novel three-term Bessel function and
Legendre-polynomial expansion of a plane wave

ex cos θy ¼ Aþ Bþ C; ð4Þ

where A¼ð1=xÞP∞
l¼0ð−1Þlð4lþ3Þj2lþ1ðxÞQ2lþ1ðicosθyÞ,

B¼ð1=xÞP∞
l¼0ð−1Þlð4lþ3Þj2lþ1ðxÞy dQ2lþ1ðicosθyÞ=dy,

C¼ 1
x2
P∞

l¼0ð−1Þlð4lþ3Þj2lþ1ðxÞð1=cosθÞd2Q2lþ1ðicosθyÞ=
dy2, with Q2lþ1ðzÞ ¼ P2lþ1ðzÞ=z. Equation (4) can be
derived with a series resummation technique. (In previous
works [8,30,32], a single-termBessel-function andLegendre-
polynomial expansion [33] was used.) Substituting x ¼ ku
and y ¼ ½−ð1 − λÞ∇1 þ λ∇2�=k into Eq. (4) and inserting
Eq. (4) into Eq. (3) with the transformed density matrix
ρt1ðr;uÞ lead to the DME expression

ρt1ðr;uÞ ¼ 3n
j1ðkuÞ
ku

þ 35j3ðkuÞ
2k3u

Gþ 105j3ðkuÞ
2k3u2

H; ð5Þ

where G ¼ 3cos2θ½ðλ2 − λþ 1=2Þ∇2n − 2τ� þ 3k2n=5,
H ¼ cos θð2λ − 1Þ∇n, with τ ¼ Poccup

i j∇ψ ij2 being the
kinetic energy density. In the derivation of Eq. (5), real
orbitals are assumed. The first term on the right-hand side
of Eq. (5) has the form of the density matrix of the uniform
electron gas,while the second and third terms are λ-dependent
inhomogeneity corrections. Clearly, the general coordinate
transformation only affects inhomogeneity corrections, but
not the extended uniform electron gas, because the latter is
translationally invariant.
To evaluate the exchange energy, we only need the

spherical average of the exchange hole over the direction
of u, which is determined by the spherical average of the
square of the density matrix, hjρt1ðr;uÞj2i [34]. In Eq. (5),
there is a parameter k, which has the dimension of the wave
vector. k ¼ kF is a natural choice for the uniform electron
gas. For inhomogeneous systems, we set k ¼ fkF, where f
is a dimensionless parameter, depending on inhomogeneity
[8]. If we choose λ ¼ 1 (conventional exchange hole), f
may be fixed by imposing the sum rule [35] on the model
exchange hole, leading to

1=f3 þ 70y=ð9f5Þ ¼ 1; ð6Þ
where y ¼ ð2λ − 1Þ2p and p ¼ s2 ¼ j∇nj2=ð2kFnÞ2 is
the square of the reduced density gradient. Here we treat λ
as a free parameter (which will be fixed later). It was
shown [21,36] that the exchange hole is not normalizable
under the general coordinate transformation. However, as
pointed out above, the general coordinate transformation
only affects the properties of the hole for inhomogeneous
systems. For slowly varying densities, 1=f3 þ 70y=
ð9f5Þ ≈ 1, which yields f ≈ 1þ 70y=27. As shown by
Eq. (6), in the large-gradient limit, f → y1=5. This asymp-
totic behavior is consistent with Becke’s large-gradient
dependence analysis [37]. Thus, we assume that for any
electron density,

f ¼ ½1þ 10ð70y=27Þ þ βy2�1=10; ð7Þ
where β is a parameter, which will be determined together
with another parameter λ later.
The exchange hole must be finite everywhere in space.

However, the appearance of the Laplacian of the electron
density in the DME of Eq. (5), which cannot be eliminated
through the angle average of the square of the density
matrix hjρ1ðr;uÞj2i, can make the model exchange hole
unphysically divergent at a nucleus. Therefore, we must
eliminate the Laplacian in Eq. (5). This can be done with
the second-order gradient expansion of the kinetic energy
density, τ ¼ τunif þ j∇nj2=ð72nÞ þ∇2n=6, where τunif ¼
ð3=10Þk2Fn is the Thomas-Fermi kinetic energy density.
This technique has been used in the construction of
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semilocal DFT [14,15] and the electron localization
indicator [38]. Replacing the Laplacian with ∇2n¼
6½τ− τunif − j∇nj2=ð72nÞ� in hjρ1ðr;uÞj2i [or Eq. (5)] yields
the spherically averaged exchange hole

ρtx ¼ −
9n
2

j21ðkuÞ
k2u2

−
105j1ðkuÞj3ðkuÞ

k4u2
L −

3675j23ðkuÞ
8k6u4

M;

ð8Þ
where L¼3ðλ2−λþ1=2Þðτ−τunif−j∇nj2=72nÞ−ðτ−τunifÞþ
7ð2λ−1Þ2j∇nj2=18n, and M ¼ ð2λ − 1Þ2j∇nj2=n. The
exchange functional can be calculated from the hole by
substituting Eq. (8) into Eq. (2) and using the Weber-
Schafheitlin integral formula [39]. The result is

Ex½n� ¼
Z

d3r nϵunifðnÞFDME
x ðp; τÞ; ð9Þ

where ϵunifðnÞ ¼ −3kF=4π is the exchange energy per
electron of the uniform electron gas, and FDME

x is the
enhancement factor given by FDME

x ¼ 1=f2 þ 7R=ð9f4Þ,
with R ¼ 1þ 595ð2λ − 1Þ2p=54 − ½τ − 3ðλ2 − λþ 1=2Þ×
ðτ − τunif − j∇nj2=72nÞ�=τunif .
The two parameters λ and β can be determined by the

following two conditions: (i) Recovery of the exchange
energy of the H atom, and (ii) the least value that ensures
FDME
x to be a monotonically increasing and smooth fun-

ction of the reduced density gradient s in the iso-orbital
region where τ¼ τW ¼ j∇nj2=ð8nÞ. This yields λ ¼ 0.6866
and β ¼ 79.873. These two constraints were used in the
construction of the Tao-Perdew-Staroverov-Scuseria
(TPSS) functional [14].
The typical bulk valence electron density is slowly

varying. Recovery of the correct gradient expansion of
the exchange energy is important for solids. It is also crucial
for surface energy, because it involves the bulk solid
contribution. However, the exchange energy functional
and the underlying exchange hole from the DME are only
exact in the uniform-gas limit, but not for slowly varying
densities. To fix this problem, we propose the following
interpolation formula between the compact density (where
the DME is more suitable) and the delocalized slowly
varying density:

ρxðr;uÞ ¼ wρtxðr;uÞ þ ð1 − wÞρscx ðr;uÞ; ð10Þ
with w ¼ ½ðτW=τÞ2 þ 3ðτW=τÞ3�=½1þ ðτW=τÞ3�2 being the
weight between the compact density and the slowly varying
correction (SC). (Other forms of w are possible. This one
provides a slightly more balanced interpolation between the
compact density and the slowly varying density.) Near a
bond center of molecules, w ≈ 0 (except for one or two-
electron systems, in which w is identically 1 everywhere).
In the core region and density tail, w ≈ 1. In bulk solids, w
is small. ρSCx ðr;uÞ can be obtained from the slowly varying
gradient expansion of the exchange hole [27]. This yields
the final expression

Fx ¼ wFDME
x þ ð1 − wÞFSC

x ; ð11Þ

where FSC
x is the fourth-order gradient correction given by

FSC
x ¼ f1 þ 10½ð10=81 þ 50p=729Þp þ 146~q2=2025−

ð73~q=405Þ½3τW=ð5τÞ�ð1 − τW=τÞ�g1=10, with ~q ¼ ð9=20Þ×
ðα − 1Þ þ 2p=3.
This completes the spin-unpolarized case. The hole and

exchange energy functional can be easily generalized to
any spin polarization, with the spin-scaling relation [20]
ρx½n↑; n↓� ¼ ðn↑=nÞρx½2n↑� þ ðn↓=nÞρx½2n↓�. For conven-
ience, we call it TM.
The density overlap region is an important region, where

the magnitude of the first derivative of the density is small,
but higher-order derivatives can be large. Therefore, it
is a pseudo slowly varying region. It includes intershell
region in atoms, a multiple-bond congestion region, and an
interstitial region in metals. This region can be modeled
with τ ¼ τW þ ατ0.
Figure 1 shows the variations of the enhancement factor

FDME
x [Eq. (9)] and its slowly varying corrected version

[Eq. (11)] from iso-orbital (α ¼ 0) to overlap regions
(α > 0) in the range 0 ≤ s ≤ 3. In the iso-orbital region,
FTM
x reduces to FDME

x , while in the overlap region, FTM
x

becomes relatively de-enhanced at small s, due to the order-
of-limit problem [14]. Since this only happens near a
nucleus, it is harmless. In the iso-orbital or core region,
both enhancement factors are flat so that the exchange
potential in this region remains finite, like LSDA and TPSS
meta-GGA, but unlike GGA.
Now we turn to the correlation part. We seek for a

correlation energy functional with the underlying correla-
tion hole. The correlation functional should respect three
important constraints: (i) one-electron self-interaction free,
(ii) correct for slowly varying densities, and (iii) exact or
nearly exact in the low-density or strong-interaction limit,
in which the exchange-correlation energy is spin indepen-
dent [40]. These considerations lead us to assume that our
correlation takes the same form as the TPSS correlation
[Eqs. (11) and (12) of Ref. [14]], but replaces Cðζ; ξÞ by a
simpler form
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FIG. 1. Enhancement factors FDME
x of Eq. (9) (red) and FTM

x of
Eq. (11) (blue) in iso-orbital regions with α ¼ 0 and orbital
overlap regions with α ¼ 0.5, 1.0. FTM

x ¼ FDME
x at α ¼ 0.
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Cðζ; ξÞ ¼ 0.1ζ2 þ 0.32ζ4

f1þ ξ2½ð1þ ζÞ−4=3 þ ð1 − ζÞ−4=3�=2g4 ; ð12Þ

where ζ ¼ ðn↑ − n↓Þ=n, and ξ ¼ j∇ζj=2ð3π2nÞ1=3. The
coefficients 0.1 and 0.32 are obtained by keeping Exc
for the one-electron Gaussian density [14,41] as spin-
independent as possible, when ζ varies from 0 to 1, so that
constraint (iii) is well respected. As shown in Fig. 2, this
modification considerably improves the low-density limit of
TPSS, leading to much better agreement of TM with the
exactExc of the one-electronGaussian density and smoother
variation all the way from ζ ¼ 0 to 1. In addition, the hole
underlying this correlation functional is known [27].
Finally, we make a comprehensive assessment of TM

functional on molecules, solids, and surfaces. To do this,
we implement TM into the Gaussian program [42] by
locally modifying the Gaussian 09 code. Molecular tests
include 148 G2=97 atomization energies [43], 96 bond
lengths (re), 82 harmonic frequencies (ωe), and 10 H-bond
dissociation energies and 11 bond lengths, while the solid
tests include 16 lattice constants (a0) and bulk moduli (B0)
as well as 7 cohesive energies (ϵcoh). All molecular calcu-
lations were performed self-consistently with basis set

6-311þþ Gð3df; 3pdÞ, while for solid-state calculations,
we used the basis sets given in Refs. [44–46]. Since the
RPA (random-phase approximation) surface correlation
energy is not reliable in the low-density regime, only σxc
is reported for rs ¼ 2 to 3 [47,48]. The results are
summarized in Table I. The detailed comparison can be
found in the Supplemental Material [49]. To show the
trend, the relative error for each property is also given in
Ref. [49]. From Table I, we see that TM yields remarkable
improvement over the LSDA, PBE, and TPSS functionals
for nearly all the properties considered.
TM is also superior, compared to other density func-

tionals. For example, the error of TM on AE6 atomization
energies, which are representative of 223 G3 molecules, is
only 5.1 kcal=mol, while the MAE of revTPSS on this
special set is 5.9 kcal=mol [15] (see Table S4 [49] for
detail). The H-bond description of TM is much more
accurate than those of both TPSS and revTPSS [15]. As
shown in Table S6 of the Supplemental Material [49], the
error of TM for 16 lattice constants (MAE ¼ 0.017 Å) is
smaller than both PBEsol (MAE ¼ 0.021 Å) and revTPSS
(MAE ¼ 0.031 Å) [15]. From Table S7 [49], we can see
that the cohesive energies of TM (MAE ¼ 0.08 eV=atom)
are more accurate than those of revTPSS (MAE ¼
0.14 eV=atom) [61]. TM is competitive with or more
accurate than the SCAN meta-GGA developed recently
by Sun, Ruzsinszky, and Perdew [17], although the latter
contains several empirical parameters fitted to atoms and a
van der Waals system (Ar2 dimer). For example, SCAN
predicts enthalpy of formation for G3=223 molecules with
MAE ¼ 5.7 kcal=mol, which is close to that of TPSS
(MAE ¼ 5.8 kcal=mol), while TM is less accurate than
TPSS for G2 atomization energies by 0.3 kcal=mol.
However, the error of TM in the lattice constant is smaller
than that of SCAN (MAE ¼ 0.019 Å), as shown in
Table S6 [49].
Table I also shows that TM is more accurate than the

combination, TMxþ TPSSc or TMTPSS, for most proper-
ties. This demonstrates why the improvements in correla-
tion from Eq. (12) are important.
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FIG. 2. Exchange-correlation energy in the low-density
limit for one-electron Gaussian density with constant spin
polarization [14,41] n↑ ¼ ½ð1þ ζÞ=ð2π3=2Þ�e−r2 and n↓ ¼
½ð1 − ζÞ=ð2π3=2Þ�e−r2 .

TABLE I. Statistical errors of five nonempirical density functionals LSDA (local spin-density approximation), PBE (Perdew-Burke-
Ernzerhof [7]), TPSS, TMTPSS, and TM for 148 G2=97 atomization energies, 82 diatomic harmonic frequencies (ωe), 96 bond lengths
(re), 10 hydrogen-bond (H bond) dissociation energies and 11 bond lengths, 16 lattice constants (a0) and bulk moduli (B0), 7 cohesive
energies (ϵcoh), and jellium surface exchange-correlation energies (σxc) for rs ¼ 2–3. The data of the LSDA, PBE, and TPSS are taken
from Refs. [14,44,60]. The best values are in boldface. ME denotes mean error and MAE = mean absolute error.

AE6 G2
(kcal/mol)

ωe
(cm−1)

re
(Å)

H bond
(kcal/mol)

H bond
length (Å)

σxc
(erg=cm2)

a0
(Å)

B0

(GPa)
ϵcoh
(eV)

MAE MAE ME MAE ME MAE ME MAE ME MAE ME MAE ME MAE ME MAE ME MAE

LSDA 77.3 83.5 −11.8 48.9 0.001 0.013 5.8 5.8 −0.127 0.147 −78 78 −0.072 0.072 12.6 13.2 0.68 0.68
PBE 15.5 18.3 −31.7 42.0 0.015 0.016 0.9 1.0 −0.018 0.043 −133 133 −0.047 0.050 −4.2 5.9 −0.03 0.12
TPSS 5.9 6.2 −18.7 30.4 0.014 0.014 0.3 0.6 −0.006 0.021 −60 60 −0.034 0.036 0.0 8.8 −0.18 0.18
TMTPSS 5.5 5.2 −16.6 29.0 0.013 0.013 −0.5 0.5 0.036 0.041 −1 1 0.005 0.019 4.9 7.3 −0.13 0.13
TM 5.1 6.5 −16.6 29.7 0.010 0.012 −0.1 0.3 0.014 0.017 35 35 −0.003 0.017 6.3 7.0 −0.05 0.08
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In summary, we have developed an exchange-correlation
functional, which can achieve remarkable accuracy over
wide-ranging properties. Unlike other DFT methods, TM
shows consistent improvement over the nonempirical DFT
methods developed in recent years. This is particularly
important in electronic structure calculations of novel
materials. Since all the parameters in TM are determined
by paradigm densities, rather than by particular systems,
they are easily transferrable fromone system to another. This
is a significant step toward the elimination of different
functionals for different tasks. We have applied the TM
functional to calculate low-lying atomic and molecular
excitation energies within the adiabatic time-dependent
DFT [62]. The results are also remarkably accurate, sub-
stantially improving the adiabatic LSDA, PBE GGA, and
TPSS functional. These highly accurate results provide
compelling evidence of the power of the TM functional.
We will report these results elsewhere. The most appealing
feature of this functional is that it is essentially derived from
or fully based on the underlying hole and thus has a strong
physical base, compared to those developed solely from
energy constraints or fitting procedures. The hole combines
the advantages of that based on the numerical cutoff
procedure [2] and the hole based on the hydrogen atom
[5] (which slightly violates the exact uniform-gas limit). The
physics behind the derivation is transparent. The TM hole
can be used to build nonlocality into the energy functional
by developing range-separation functionals for band gap
[63,64], reaction barrier, and charge transfer calculations.
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