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Standard methods for including electromagnetic interactions in lattice quantum chromodynamics
calculations result in power-law finite-volume corrections to physical quantities. Removing these by
extrapolation requires costly computations at multiple volumes. We introduce a photon mass to
alternatively regulate the infrared, and rely on effective field theory to remove its unphysical effects.
Electromagnetic modifications to the hadron spectrum are reliably estimated with a precision and cost
comparable to conventional approaches that utilize multiple larger volumes. A significant overall cost
advantage emerges when accounting for ensemble generation. The proposed method may benefit lattice
calculations involving multiple charged hadrons, as well as quantum many-body computations with long-
range Coulomb interactions.
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Introduction.—Approximately 95% of the visible mass
of the Universe arises from the binding of quarks into
nucleons by the strong interactions of quantum chromo-
dynamics (QCD). The relative mass difference between the
proton and neutron is approximately 0.07%, and is attrib-
uted to two sources of isospin symmetry breaking in the
standard model, namely, differences in the down and up
quark masses and their electric charges. Although these
breaking effects are minute, they play an essential role in
our understanding of the Universe. For example, the
primordial abundance of light nuclear elements in the early
Universe is exquisitely sensitive to the excess mass of the
neutron compared to the proton [1,2].
Lattice QCD (LQCD) provides a first-principles

approach for determining isospin-breaking effects in had-
ronic and nuclear processes. There are a handful of LQCD
calculations of the strong contribution to the nucleon mass
splitting [2–8] and a comparable number that determine the
electromagnetic corrections [4,6–16]. One impressive cal-
culation includes both sources of isospin breaking simulta-
neously and yields, among other quantities, a postdiction
for the nucleon isospin splitting with ∼5σ statistical
significance [8]. There exists an alternate means for
determining the electromagnetic self-energy of the nucleon,
from the Cottingham formula [17–20], which makes use of
experimental cross sections as input to dispersion integrals.
However, the uncertainty attained with this method [21–23]
is not yet competitive with the LQCD calculations.
Although inclusion of electromagnetism in LQCD is

theoretically straightforward [24,25], it presents practical

challenges due to the long-range nature of the electromag-
netic (QED) interactions. Specifically, such interactions
give rise to power-law finite-volume (FV) corrections, and
their removal via extrapolation requires computationally
demanding simulations performed at multiple volumes. An
analytic understanding of the power-law FV effects within
such setups [8,26–28] has enabled reliable FV extrapola-
tions of the single hadron spectrum.
Despite the successful application of present techniques,

there are a number of reasons for considering new methods.
Control over FV modifications to light nuclear binding
energies seems to require particularly large volumes [26].
There are quantities in addition to the spectrum for which a
precise knowledge of the QED modifications is needed, for
example, corrections to hadronic matrix elements [29] and
charged particle scattering [30], both of which suffer from
infrared (IR) challenges. LQCD calculations are performed
with multiple ultraviolet (UV) regulators, providing valu-
able cross-checks on the continuum extrapolation of many
important quantities [31]. Multiple IR regulators can do the
same for LQCD calculations that include QED, but to date,
only a few other formulations have been considered [32–
34]. Of those, only one is constructed with a local quantum
field theory [33,34]. Finally, computationally efficient
means of accounting for IR effects are always desirable,
not just for lattice QCDþ QED, but anywhere long-range
Coulomb interactions are present (see, e.g., Ref. [35]).
Motivated by these considerations, we demonstrate the

viability of an alternative IR regulator for lattice QCDþ
QED simulations: namely, the introduction of a photon
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mass mγ . Although a photon mass term manifestly violates
gauge invariance, it maintains locality and its effects on
hadronic quantities can be reliably quantified and
accounted for within an effective field theory (EFT)
framework. The introduction of a new scale mγ implies
an additional extrapolation within our approach. With the
aid of analytic formulas, however, we demonstrate that for
the spectrum, such extrapolations can be performed at a
single volume and yield results that are consistent with
conventional approaches. In the remaining sections, we
present the salient features of our calculation.
Analytic considerations.—In continuum Euclidean

spacetime, the Rξ gauge fixed action for the massive
photon is given by

Lγ ¼
1

4
F2
μν þ

1

2ξ
ð∂μAμÞ2 þ

1

2
m2

γA2
μ; ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ; throughout this study, we work
in Landau gauge, corresponding to the limit ξ → 0. An
Abelian theory, such as QED, with a massive vector gauge
field is still perturbatively renormalizable. This well known
result follows from the fact that it is possible to find a
Becchi-Rouet-Stora-Tyutin (BRST) transformation that
leaves the Lagrangian invariant up to a total divergence
[36]. The BRST symmetry is preserved if one uses a gauge
invariant UV cutoff [37], such as a spacetime lattice; thus,
the renormalizability follows from the power-counting
theorems for a lattice regularization [38].
We consider three forms of corrections to correlators and

hadron mass differences at leading order in the fine-
structure constant α ¼ e2=ð4πÞ. These corrections arise
from either the zero mode contribution to the partition
function, the presence of a finite photon mass, or FVeffects.
The analytic forms of these corrections are determined from
an EFT for hadrons of mass M (M ¼ mn, mp, mKþ , and
mK0) and charge Q; the naive expansion is in mγ=M (i.e.,
ΛUV ¼ M) [39]. The EFT is a generalization of non-
relativistic QED [40] for hadrons that includes a photon
mass term, and additional operators that are not constrained
by gauge invariance.
(1) Zero mode: For sufficiently small mγ, the zero

mode of the temporal photon field appearing in Eq. (1)
must be treated nonperturbatively [41]. In this regime, the
two-point function for single hadrons has the form

CðτÞ ¼ Ze−Mτ−xτ2 ; ð2Þ
where Z is an overlap factor; the zero-mode contribution
appears as x ¼ ð4παQ2Þ=ð2m2

γL3TÞ, and vanishes as
T → ∞ at fixed L and mγ .
(2) Photon mass: The hadron’s electromagnetic mass

shift can be determined as a function of photon mass, order
by order in an expansion in powers of mγ=M. With the
electromagnetic mass written as Mðα; mγÞ, we define the

mass shift ΔγMðα; mγÞ ¼ Mðα; mγÞ −Mðα; 0Þ, which is
UV finite. These IR shifts are given by

ΔγMLO ¼ −
α

2
Q2mγ;

ΔγMNLO ¼
�
Ce2 −

α

4π
Q2

�
m2

γ

M
: ð3Þ

The leading-order (LO) expression is nonanalytic in the
squared photon mass, whereas the next-to-leading-order
(NLO) expression is analytic but arises from both loops and
local contributions [42]; the next-to-next-leading-order
(N2LO) correction is of order ΔγMðN2LOÞ ¼ Oðm3

γ=M2Þ.
The latter two orders are accompanied by coefficients not
fixed by the hadron charge.
(3) Finite volume: The effects of FV can similarly be

calculated using a nonrelativistic QED approach. This is a
finite photon mass generalization of that pursued by
Refs. [26,27]. The FV corrections to the electromagnetic
mass are written as δLMðα; mγ; LÞ ¼ Mðα; mγ; LÞ−
Mðα; mγ;∞Þ, and for charged hadrons are given up to
NLO by

δLMLO ¼ 2παQ2mγ

�
I1ðmγLÞ −

1

ðmγLÞ3
�
;

δLMNLO ¼ παQ2
m2

γ

M
½2I1=2ðmγLÞ þ I3=2ðmγLÞ�; ð4Þ

where

InðzÞ ¼
1

2nþ
1
2π

3
2ΓðnÞ

X
ν≠0

K3
2
−nðzjνjÞ

ðzjνjÞ32−n ð5Þ

and ν ∈ Z3. By contrast, the leading nonvanishing correc-
tion for neutral baryons [mesons] appears at N2LO [next-
to-next-to-next leading order (N3LO)]. Because the
zero mode of the temporal photon is treated exactly in
Eq. (2), the FV corrections are calculated with this mode
removed—a manifestation of which is the subtracted term
appearing at LO.
Lattice parameters and ensembles.—Electroquenched

numerical calculations of the hadron spectrum were per-
formed using a modified version of the Chroma software
suite [43]. Studies were performed using dynamical SU(3)
flavor symmetric isotropic QCD gauge field configurations
generated using a tadpole-improved Lüscher-Weisz gauge
action and clover fermion action. The configurations
correspond to a single lattice spacing a¼0.1453ð16Þ fm,
three spatial extents L ∼ 3.48 fm, 4.64 fm, and 6.96 fm,
and temporal extents T > L. The pion (kaon) and nucleon
masses in physical units are m̄π ¼ m̄K ¼ 807.0ð9.1Þ MeV
and m̄n ¼ 1.634ð18Þ GeV, respectively. This choice of
masses ensures that the only appreciable FV corrections
to hadron masses are those arising from QED effects.
The QCD ensembles used in this work comprise 956
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(L=a ¼ 24, T=a ¼ 48), 515 (L=a ¼ 32, T=a ¼ 48),
and 342 (L=a ¼ 48, T=a ¼ 64) configurations and are a
subset of those described in Ref. [44]; further details
regarding the ensembles, lattice action, and parameters
can be found there.
The uncorrelated photon field configurations Aμ were

generated using two different lattice actions: a conventional
massless Coulomb gauge-fixed action with the zero mode
removed [11,24,25] (QEDTL) [45], and a naive lattice
discretized form of Eq. (1) (QEDM), where the derivatives
are replaced by finite differences. Note that in Euclidean
space, Landau gauge is a complete gauge-fixing condition,
and therefore in the latter case, the path integration
over nonzero modes is well defined in the mγ → 0 limit.
The photon mass values considered in this work are given
by mγ=m̄π ∈ ½1=14; 1=7; 1=4; 1=3; 5=12; 1=2; 7=12; 1�. In
both cases, results were obtained by computing correlation
functions on QCDþ QED gauge configurations generated
by postmultiplying each QCD configuration by a single
eieQqAμ , whereQu ¼ 2=3,Qd ¼ Qs ¼ −1=3. In the electro-
quenched approximation with SU(3) flavor symmetry,
isospin splittings have missing contributions that are
Oðα2Þ, and are therefore negligible for this study.
In the electroquenched theory, the fine structure

coupling does not renormalize and therefore we take
it to be equal to its experimental value α−1 ¼ 137.036…,
measured in the Thomson limit. The presence of
electromagnetic interactions demands renormalization

of the valence bare quark masses mq, however. Since our
lattice regulator breaks chiral symmetry, this leads to an
additive shift in the quark mass. We tune the valence
quark masses so that, in the presence of electromagnetic
interactions, the neutral q̄q meson mass mqq obtained
from the connected part of the q̄q correlation function is
sufficiently close to the pion (kaon) mass m̄π . For our
electroquenched calculation, this choice of renormali-
zation is robust but the quark mass renormalization in
the full QCDþ QED does not allow for a unique
separation of the QED and QCD effects [46]. All
measurements were performed using valence quark
masses amu ¼ −0.25501 and amd ¼ ams ¼ −0.24750
(the QCD bare quark mass is amq ¼ −0.2450); the
resulting mistuning for the charge neutral mesons
was Δmqq=m̄π ≲ 0.1% for all values of mγ=m̄π ≤ 1,
where Δmqq ≡mqq − m̄π .
The mistuning from strong isospin breaking can be

estimated using chiral symmetry. For the kaon, one finds

ΔmKþ-K0

m̄K
≃ 1

2

Δmuu − Δmdd

m̄K
≲ 0.0004; ð6Þ

while the nucleon correction is given by

Δmn-p

m̄n
≃ αd-u

2ðΔmdd − ΔmuuÞ
m̄π

m̄2
π

4πfπm̄n
: ð7Þ

We can estimate the parameter αd-u from the LQCD
determination of the md −mu contribution to the nucleon
mass splitting [2–8] and find Δmp-n=m̄n ≲ 0.0002. In both
cases, mistuning is a potentially sizable correction to our
results, which affects both the QEDTL and QEDM deter-
minations. Although a precise quark mass tuning is
required for practical applications, it is not needed in the
present proof-of-principle study [47].
Analysis and results.—Shell-shell and shell-point

correlation functions were estimated using a single
measurement per configuration, with a randomly chosen
spacetime source location. Following Ref. [9], we aver-
age observables over þe and −e on each configuration in
order to exactly cancel off the OðeÞ contributions to

TABLE I. QEDTL induced mass splittings, extrapolated to
L → ∞ (mγ ¼ 0, Kγ ¼ 0).

Splitting KL χ2=DOF ΔM=M × 103

p-n 1 0.07=2 0.73(05)
2 0.03=1 0.70(13)

Kþ-K0 1 0.29=2 3.71(06)
2 0.17=1 3.68(20)

FIG. 1. Zero-mode adjusted (filled) and unadjusted (open)
effective mass difference for the kaon splitting (mγ=m̄π ¼ 1=14
and L=a ¼ 24). The diagonal grid lines have slope 2x; the red and
blue points correspond to different sinks. The gray bands corre-
spond to uncertainties on the extracted value for ΔMeff.

FIG. 2. QEDTL induced mass differences, extrapolated to
L → ∞ (taking KL ¼ 2).
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statistical noise. Mass differences due to electromagnetic
effects can be determined from the late-time dependence
of the single hadron correlation functions CAðτÞ and
CBðτÞ, by studying the plateau region of an effective
mass difference ΔMAB

eff ðτÞ ¼ MA
effðτÞ −MB

effðτÞ. By
exploiting the correlations between A and B, we are able
extract a clear signal for the mass difference. For the
nucleons, we consider a generalized effective mass
formula of the form

Meff;expðτÞ ¼ −
1

a
log

Cðτ þ aÞ
CðτÞ þ 2xτ þ xa; ð8Þ

which neglects the backward propagation of states on a
lattice of finite temporal extent T. For mesons, we
account for the backward propagating state by consider-
ing a generalized effective mass formula of the form

Meff;coshðτÞ ¼
1

a
cosh−1

�
ehðτ;aÞ þ ehðτ;−aÞ

2

�
− xT; ð9Þ

where hðτ; aÞ ¼ xaða − T þ 2τÞ þ log½Cðτ þ aÞ=CðτÞ�.
Both formulas treat the zero mode of the temporal photon
field appearing in Eq. (2) nonperturbatively (for neutral
hadrons x ¼ 0 and these expressions reduce to their
conventional forms). Although this contribution is neg-
ligible compared to the hadron masses, for the lattice
parameters considered it can be comparable in magnitude
to the mass differences we wish to extract. Figure 1
provides an explicit example of the behavior of ΔMeffðτÞ
for the kaon mass splitting, computed both with and
without the zero-mode contribution accounted for.
Mass differences were determined for all volumes and

photon masses via a correlated constant least-squares fit to
ΔMeff in the plateau region, as demonstrated in Fig. 1. An
analogous determination from exponential fits to a ratio of
correlation functions yielded consistent results. Systematic
uncertainties were estimated by varying the region over
which the fits were performed, and all uncertainties were
added in quadrature. The extracted mass shifts were
subsequently extrapolated to vanishing photon mass
and/or the infinite-volume limit using the fit formula

ΔMðα; L;mγÞ ¼ ΔMðαÞ þ
XKγ

k¼0

ΔγMNkLOðα; mγÞ

þ
XKL

k¼0

δLMNkLOðα; mγ; LÞ; ð10Þ

where Kγ and KL indicate the order of each extrapolation.
In the case of mass splittings, an appropriate linear
combination of mass shift formulas was used. Note that
for the QEDTL extrapolations, Kγ ¼ 0; the appropriate FV

formulas for δLMNkLO retain T dependence, and may be
found in Ref. [8].
We carry out two independent analyses to test the viability

of our proposal: (1) an infinite-volume extrapolation of
QEDTL induced mass differences, as is conventionally
performed, and (2) an mγ → 0 extrapolation of QEDM

induced mass differences using data at a single FV, but
after having first removed the lowest order FV contributions
δLM. Both types of extrapolation were performed using
Eq. (10), noting that many of the lowest-order contributions
are fixed by theory. Results for the first analysis, using all
three volumes, are provided in Table I and representative fits
are shown in Fig. 2. Results for the second analysis on the
smallest volume are provided in Table II for comparison, and
shown in Fig. 3. Analogous QEDM extrapolations, per-
formed at each of the three volumes, are summarized in
Fig. 4 and are consistent not only with each other, but also

TABLE II. QEDM induced mass splittings, extrapolated to
mγ → 0 (L=a ¼ 24, KL ¼ 1).

Splitting mγ=mπ range Kγ χ2=DOF ΔM=M × 103

p-n 1=14–1 2 0.09=5 0.79(06)
1=4–1=2 1 0.06=2 0.81(08)

Kþ-K0 1=14–1 2 0.42=5 3.77(06)
1=4–1=2 1 0.12=2 3.79(06)

FIG. 3. Volume adjusted (KL ¼ 1) QCDM induced mass
differences, extrapolated to mγ → 0. Fits were performed using
L=a ¼ 24 data at all (bottom) and only the middle four (top)
values of mγ .
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the QEDTL extrapolations. In all cases, we find that the
numerical and theoretical mass corrections are in excellent
agreement down to at least mγL ∼ 1.
The most computationally demanding part of our cal-

culation involves multiple inversions of the Dirac operator.
Assuming, conservatively, a linear scaling with spacetime
volume, the total inversion cost for L=a ¼ 32 is 515=956 ×
ð32=24Þ3 ∼ 1.3 times greater than that of L=a ¼ 24. By
comparison, the L=a ¼ 48 inversion cost is ∼3.8 times
greater. The L=a ¼ 24 extrapolations using mγ=m̄π ∈
½1=4; 1=2� data, provided in Table II, are consistent with
those using all values of mγ. The results are also consistent
with the QEDTL extrapolation using three volumes, pro-
vided in Table I, but required only 4=5 the computational
cost. We therefore conclude that for the same precision and
accuracy, the numerical cost of our QEDM calculation of
the mass splittings is comparable to or less than that
of QEDTL.
Conclusion.—This work demonstrates that it is possible

to reliably estimate infinite-volume hadron mass
differences induced by electromagnetism on a single
lattice volume with QEDM. Conservatively, the pionless
EFT employed in this work is valid for mγ ≪ 2mπ and
mπL≳ 4. Provided these inequalities are satisfied, the
analytic expressions obtained for the mass shift are valid
up toOðm3

γ=M3; α2Þ, and are independent of the pion mass;
from our numerics, it appears that this order is sufficient to
obtain reliable extrapolations of the mass shifts in the
regime mγ=mπ ≲ 1 and mγL≳ 1.
On preexisting lattice configurations, and for equal

computational cost, we obtain an equally precise uncer-
tainty in extrapolated differences as compared to the
traditional method. This cost comparison does not account
for the significant overhead of generating the configura-
tions in the first place. The results of our analysis pave the
way for a more complete treatment of QED corrections
using this approach. When considering more involved

LQCD calculations, such as charged-particle scattering
[30], our method provides a mass gap to produce a photon,
thus increasing the range of energy for which the standard
Lüscher method [48,49] for obtaining the scattering phase
shift can be employed. It will be interesting to explore these
types of calculations, and also to use our method with chiral
fermions, which do not suffer from additive quark mass
renormalization. Finally, it would be interesting to see if our
method of screened interactions coupled with analytic
extrapolation techniques is of benefit to quantum many-
body calculations.
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