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Recently a 6.8σ anomaly has been reported in the opening angle and invariant mass distributions of eþe−

pairs produced in 8Be nuclear transitions. The data are explained by a 17 MeV vector gauge boson X that is
produced in the decay of an excited state to the ground state, 8Be� → 8BeX, and then decays through
X → eþe−. The X boson mediates a fifth force with a characteristic range of 12 fm and has millicharged
couplings to up and down quarks and electrons, and a proton coupling that is suppressed relative to
neutrons. The protophobic X boson may also alleviate the current 3.6σ discrepancy between the predicted
and measured values of the muon’s anomalous magnetic moment.
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Introduction.—The four known forces of nature, the
electromagnetic, weak, strong, and gravitational inter-
actions, are mediated by the photon, the W and Z bosons,
the gluon, and the graviton, respectively. The possibility of
a fifth force, similarly mediated by an as-yet-unknown
gauge boson, has been discussed [1] since shortly after the
introduction of Yang-Mills gauge theories, and has a rich, if
checkered, history [2]. If such a force exists, it must either
be weak, or short ranged, or both to be consistent with the
wealth of experimental data. In recent years, interest in this
possibility has been heightened by the obvious need for
dark matter, which has motivated new particles and forces
in a dark or hidden sector that may mix with the visible
sector and naturally induce a weak fifth force between the
known particles.
Recently, studies of decays of an excited state of 8Be to its

ground state have found a 6.8σ anomaly in the opening angle
and invariant mass distribution of eþe− pairs produced in
these transitions [3]. The discrepancy from expectationsmay
be explained by as-yet-unidentified nuclear reactions or
experimental effects, but the observed distribution is beauti-
fully fit by assuming the production of a new boson. In this
work, we advance the new particle interpretation, carefully
considering the putative signal and the many competing
constraints on its properties, and present a viable proposal
for the new boson and the fifth force it induces.
The 8Be decay anomaly.—The 8Be nuclear excitation

spectrum is precisely known [4]. For this discussion, the
most relevant 8Be nuclear states and their properties are
given in Table I. To simplify our notation, we use the given
symbols to denote specific states. The ground state atomic
mass is 8.005305 u≃ 7456.89 MeV; the ground state
nuclear mass listed in Table I is about 4me below this.
There are also several unlisted broad resonance excited
states both above and below 8Be� and 8Be�0 with widths as
large as several MeV.

In the experiment of Krasznahorkay et al. [3], an intense
proton beam impinges on thin 7Li targets. Given the 7Li
nucleus mass of 6533.83 MeV, the 8Be� and 8Be�0 states are
resonantly produced by tuning the proton kinetic energies to
1.025and0.441MeV, respectively.The resultingexcited states
then decay promptly, dominantly back to p7Li, but also
through rare electromagnetic processes. For 8Be�, radiative
decay to the ground state has branching ratio Bð8Be� →
8Be γÞ ≈ 1.4 × 10−5, and there are also decays via internal
pair conversion (IPC) with branching ratio Bð8Be� →
8Beeþe−Þ ≈ 3.9× 10−3Bð8Be� → 8Be γÞ ≈ 5.5× 10−8 [5].
For the IPC decays, one can measure the opening angle

Θ between the eþ and e− and also the invariant massmeþe− .
One expects these distributions to be sharply peaked at low
values of Θ andmeþe− and fall smoothly and monotonically
for increasing values. This is not what is seen in the 8Be�
decays. Instead, there are pronounced bumps at Θ ≈ 140°
and at meþe− ≈ 17 MeV [3]. The experimental analysis fits
the contributions from nearby broad resonances, but these
cannot reproduce the shape of the observed excesses. The
deviation has a significance of 6.8σ, corresponding to a
background fluctuation probability of 5.6 × 10−12 [3]. The
excess is maximal on the 8Be� resonance and disappears as
the proton beam energy is moved off resonance. No such
effect is seen in 8Be�0 IPC decays.
The fit may be improved by postulating a new boson X

that is produced on shell in 8Be� → 8BeX and decays

TABLE I. Relevant 8Be states and their masses, decay widths,
and spin-parity and isospin quantum numbers.

State Mass (MeV) Width (keV) JP Isospin

8Be� (18.15) 7473.00 138 1þ 0
8Be�0 (17.64) 7472.49 10.7 1þ 1
8Be (g.s.) 7454.85 � � � 0þ 0
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promptly via X → eþe−. The authors of Ref. [3] have
simulated this process, including the detector energy
resolution, which broadens the meþe− peak significantly
[6]. They find that the observed excess’s shape and size
are beautifully fit by a new boson with mass mX ¼
16.7� 0.35ðstatÞ � 0.5ðsystÞ MeV and relative branching
ratio Bð8Be� → 8BeXÞ=Bð8Be� → 8Be γÞ ¼ 5.8 × 10−6,
assuming BðX → eþe−Þ ¼ 1. With these values, the fit
had a χ2=dof ¼ 1.07.
Protophobic gauge bosons.—Apriori theX bosonmaybe

a scalar, pseudoscalar, vector, axial vector, or even a spin-2
particle. Some of these cases are easy to dismiss. If parity is
conserved, the X boson cannot be a scalar: in a 1þ → 0þ0þ
transition, angular momentum conservation requires the
final state to have L ¼ 1, but parity conservation requires
þ1 ¼ ð−1ÞL. Decays to a pseudoscalar 0− state are not
forbidden by any symmetry, but are severely constrained by
experiment. For such axionlike particles a, the two-photon
interaction gaγγaFμν ~Fμν is almost certainly present at some
level, but forma ≈ 17 MeV, all coupling values in the range
1=ð1018 GeVÞ < gaγγ < 1=ð10 GeVÞ are excluded [7,8].
Here we focus on the vector case. We consider a massive

spin-1 Abelian gauge boson X that couples nonchirally to
standard model (SM) fermions with charges εf in units of e.
The new Lagrangian terms are

L ¼ −
1

4
XμνXμν þ 1

2
m2

XXμXμ − XμJμ; ð1Þ

where X has field strength Xμν and couples to the current
Jμ ¼

P
feεff̄γμf, or, at the nucleon level, J

N
μ ¼ eεpp̄γμpþ

eεnn̄γμn, with εp ¼ 2εu þ εd and εn ¼ εu þ 2εd.
We first determinewhat values of the charges are required

to fit the 8Be signal. The characteristic energy scale of
the decay 8Be� → 8BeX is 10MeV, and sowemay consider
an effective theory in which 8Be�, 8Be, and X are the
fundamental degrees of freedom. The one effective operator
consistent with the JP quantum numbers of these states is

Lint ¼
1

Λ
ϵμναβð∂μ

8Be�ν − ∂ν
8Be�μÞXαβ

8Be: ð2Þ

The matrix element h8BeXjLintj8Be�i is proportional to
h8BejJNμ j8Be�i ¼ ðe=2Þðεp þ εnÞM, where M ¼
h8Bejðp̄γμpþ n̄γμnÞj8Be�i contains the isoscalar compo-
nent of the current, since the initial and final states are both
isoscalars. The resulting decay width is

Γð8Be� → 8BeXÞ ¼ ðe=2Þ2ðεp þ εnÞ2
3πΛ2

jMj2j~pXj3: ð3Þ

To fit the signal, we need

Bð8Be� → 8BeXÞ
Bð8Be� → 8Be γÞ ¼ ðεp þ εnÞ2

j~pXj3
j~pγj3

≈ 5.8 × 10−6; ð4Þ

where, up to higher-order corrections [9], both the nuclear
matrix elements and the scale Λ have canceled in the ratio.
For mX ¼ 17 MeV, we require jεp þ εnj ≈ 0.011, or

jεu þ εdj ≈ 3.7 × 10−3: ð5Þ
The 17 MeV X boson is produced through hadronic

couplings, but can decay only to eþe−, νν̄, or γγγ. (We
assume there are no decays to unknown particles.) The
three-photon decay is negligible, and we will assume that
decays to neutrinos are also highly suppressed, for the
reasons given below. The X boson then decays through its
electron coupling with width [10]

ΓðX → eþe−Þ ¼ ε2eα
m2

X þ 2m2
e

3mX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

e=m2
X

q
: ð6Þ

The X boson is produced with velocity v ≈ 0.35c in
the 8Be� frame, which is moving nonrelativistically with
v ¼ 0.017c relative to the lab frame. The X mean decay
length is L ≈ ε−2e 1.8 × 10−12 m in the lab frame. The X
boson must decay promptly in the experimental setup of
Refs. [3,6], so that the eþe− decay products are detected
and the Θ measurements are not distorted. Requiring
L≲ 1 cm, for example, implies

jεej ≳ 1.3 × 10−5: ð7Þ
FromEq. (5), we see that a dark photon cannot explain the

8Be anomaly. For a dark photon, fermions have charges
proportional to their SM charges, εf ¼ qfε, where ε is the
kinetic mixing parameter, and so Eq. (5) implies ε ≈ 0.011.
This is excluded by many experiments, and most stringently
by the NA48=2 experiment, which requires ε < εmax ¼
8 × 10−4 at 90% CL [11]. The authors of Ref. [3] estimated
that ε2 ∼ 10−7 can fit the signal, but this value of ε is far too
small, in part because of the j~pj3 suppression of the signal.
The NA48=2 bound, however, does not exclude a general

vector boson interpretation of the 8Be anomaly. TheNA48=2
limit is a bound on π0 → Xγ. In the general gauge boson
case, this is proportional to the anomaly trace factor
Nπ ≡ ðεuqu − εdqdÞ2. Applying the dark photon bound
Nπ < ε2max=9, we find that, for a general gauge boson,

j2εu þ εdj < εmax ¼ 8 × 10−4: ð8Þ

Equations (5) and (8) may be satisfied with a mild ∼10%
cancellation, provided the charges satisfy

−2.3 <
εd
εu

< −1.8; −0.067 <
εp
εn

< 0.078: ð9Þ

Given the latter condition, we call the general class of vector
models that can both explain the 8Be anomaly and satisfy
pion decay constraints “protophobic.”
Constraints from other experiments.—Although there is

no need for the gauge boson to decouple from protons
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completely, for simplicity, for the rest of this work, we
consider the extreme protophobic limit where εp ¼ 0. We
parametrize the quark charges as εu ¼ − 1

3
εn, εd ¼ 2

3
εn and

determine what choices for εn, εe, and εν are viable. We
focus on these first-generation charges, as the 8Be signal
depends on them, but include comments on the charges of
the other generations below. The charges required to
explain the 8Be signal, along with the leading bounds
discussed below, are shown in Fig. 1.

As noted above, the decay 8Be�0 → 8BeX is not seen.
The protophobic gauge boson can mediate isovector
transitions, so there is no dynamical suppression of this
decay. However, its mass is near the 17.64 MeV threshold,
so that the decay is kinematically suppressed. For
mX ¼ 17.0ð17.4Þ MeV, the j~pXj3=j~pγj3 phase space sup-
pression factor is 2.3 (5.2) times more severe for the 8Be�0

decay than for the 8Be� decay. In particular, mX ¼
17.4 MeV is within 1σ of the central value, and a 5.2
times smaller signal in the 8Be�0 decay is consistent with
the data. We will continue to refer to the boson as a 17 MeV
boson, as no other processes are sensitive to the precise
value of its mass, with the understanding that the null 8Be�0
result may require it to be a bit above 17 MeV. Note that
althoughmX ¼ 17.4 MeV is near the end point of the 8Be�0

decay, it is not near the end point of the 8Be� decay, and the
Θ and meþe− distributions return to near their SM values
at high values. This is not a “last bin” effect.
A number of experiments provide upper bounds on jεej.

The anomalous magnetic moment of the electron, ðg − 2Þe,
constrains jεej < 1.4 × 10−3 (3σ) [12]. The KLOE-2
experiment has looked for eþe− → γX, followed by
X → eþe−, and finds jεej < 2 × 10−3 [13]. A similar search
in the BABAR experiment has reached similar sensitivity in
εe, but is limited to mX > 20 MeV [14].
Electron beam dump experiments also constrain εe by

searching for X bosons radiated off electrons that scatter on
target nuclei. As a group, these exclude jεej in the 10−8 to
10−4 range [15]. For this discussion, given Eq. (7), these
experiments provide lower bounds on jεej. In more
detail, for mX ≈ 17 MeV, SLAC experiment E141 requires
jεej > 2 × 10−4 [16,17]. There are also less stringent
bounds from Orsay [18] and SLAC’s E137 [19] and
Millicharge [20] experiments, and Fermilab experiment
E774 [21] excludes some couplings when mX < 10 MeV.
We now turn to bounds on the hadronic couplings. We

have already discussed the NA48=2 bound from π0 decays.
WASA-at-COSY has also published a bound based on π0

decays, but it is weaker and applies only formX > 20 MeV
[22]. Potentially more problematic is a bound from the
HADES experiment, which searches for X bosons in π0, η,
and Δ decays and excludes the dark photon parameter
ε≳ 3 × 10−3, but this also applies only for mX > 20 MeV
[23]. Note also that π0 → XX → eþe−eþe− is not sup-
pressed by the protophobic charge assignments, but it is
suppressed by ε4n and, for jεnj ∼ 10−2, this is below current
sensitivities. Similar considerations suppress X contribu-
tions to other decays, such as πþ → μþνμeþe−, to accept-
able levels.
The hadronic charge can also be bounded by limits on

Yukawa potentials from neutron-nucleus scattering. For a
Yukawa potential −g2nAe−mXr=ð4πrÞ, n–Pb scattering
requires g2n=ð4πÞ < 3.4 × 10−11ðmX=MeVÞ4 [24]. The
protophobic X boson induces a Yukawa potential

FIG. 1. The required charges to explain the 8Be anomaly in the
ðεu; εdÞ (top) and ðεν; εeÞ (bottom) planes, along with the leading
constraints discussed in the text. Top: The n-Pb and NA48=2
constraints are satisfied in the shaded regions. On the protophobic
contour, εd=εu ¼ −2. The width of the 8Be bands corresponds to
requiring the signal strength to be within a factor of 2 of the best
fit. Bottom: The E141, KLOE-2, ðg − 2Þe, and ν-e scattering
constraints exclude their shaded regions, whereas ðg − 2Þμ favors
its shaded region. The 8Be signal imposes a lower bound on jεej.
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ε2nαðA − ZÞe−mXr=r. Given Z ¼ 82 and A ¼ 208 for Pb, the
bounds imply jεnj < 2.5 × 10−2.
There are constraints from proton fixed target experi-

ments. The ν-Cal I experiment at the U70 accelerator at
IHEP provides a well-known dark photon constraint, but its
bounds are derived from X bremsstrahlung from the initial
p beam and π0 decays to X bosons [25]. Both of these are
suppressed in protophobic models. The CHARM experi-
ment at CERN also bounds the parameter space through
searches for η, η0 → X γ, followed by X → eþe− [26]. At
the upper boundary of the region excluded by CHARM, the
constraint is determined almost completely by the param-
eters that enter the X decay length, and so the dark photon
bound on ε applies to εe and requires jεej > 2 × 10−5.
A similar, but weaker constraint can be derived from
LSND data [27–29].
There are also bounds on the neutrino charge εν. In the

present case, where εe is nonzero, a recent study of B-L
gauge bosons [30] finds that these couplings are most
stringently bounded by precision studies of ν̄-e scattering
from the Taiwan Experiment on Neutrinos (TEXONO) for
the mX of interest here [31]. Reinterpreted for the present
case, these studies require jενεej1=2 ≲ 7 × 10−5. There are
also bounds from coherent neutrino-nucleus scattering.
Dark matter experiments with Xe target nuclei require a
B-L gauge boson to have coupling gB-L ≲ 4 × 10−5 [32].
Rescaling this to the current case, given Z ¼ 54 and
A ¼ 131 for Xe, we find jενεnj1=2 < 2 × 10−4.
To explain the 8Be signal, εn must be significantly larger

than εe. Nevertheless, the ν̄-e scattering constraint provides
a bound on εν that is comparable to or stronger than the ν-N
constraint throughout parameter space, and so we use the
ν̄-e constraint below. Note also that, given the range of
acceptable εe, the bounds on εν are more stringent than the
bounds on εe, and so BðX → eþe−Þ ≈ 100%, justifying
our assumption above.
Although not our main concern, there are also bounds on

second-generation couplings. For example, the NA48=2
experiment also derives bounds on Kþ → πþX, followed
by X → eþe− [11]. However, this branching ratio vanishes
for massless X and is highly suppressed for low mX. For
mX ¼ 17 MeV, the bound on εn is not competitive with
those discussed above [10,12]. The KLOE-2 experiment
also searches for ϕ → ηX followed by X → eþe− and
excludes the dark photon parameter ε≳ 7 × 10−3 [33].
This is similar numerically to bounds discussed above, and
the strange quark charge εs can be chosen to satisfy this
constraint.
In summary, in the extreme protophobic case with

mX ≈ 17 MeV, the charges are required to satisfy
jεnj < 2.5 × 10−2 and 2 × 10−4 < jεej < 1.4 × 10−3, and
jενεej1=2 ≲ 7 × 10−5. Combining these with Eqs. (5) and
(7), we find that a protophobic gauge boson with first-
generation charges

εu ¼ −
1

3
εn ≈�3.7 × 10−3;

εd ¼
2

3
εn ≈∓7.4 × 10−3;

2 × 10−4 ≲ jεej ≲ 1.4 × 10−3;

jενεej1=2 ≲ 7 × 10−5; ð10Þ

explains the 8Be anomaly by 8Be� → 8BeX, followed by
X → eþe−, consistent with existing constraints. For jεej
near the upper end of the allowed range in Eq. (10) and
jεμj ≈ jεej, the X boson also solves the ðg − 2Þμ puzzle,

reducing the current 3.6σ discrepancy to below 2σ [10].
Conclusions.—We find evidence in the recent observa-

tion of a 6.8σ anomaly in the eþe− distribution of nuclear
8Be decays for a new vector gauge boson. The new particle
mediates a fifth force with a characteristic length scale of
12 fm. The requirements of the signal, along with the many
constraints from other experiments that probe these low
energy scales, constrain the mass and couplings of the
boson to small ranges: its mass is mX ≈ 17 MeV, and it
has millicharged couplings to up and down quarks and
electrons, but with relatively suppressed (and possibly
vanishing) couplings to protons (and neutrinos) relative
to neutrons. If its lepton couplings are approximately
generation independent, the 17 MeV vector boson may
simultaneously explain the existing 3.6σ deviation from
SM predictions in the anomalous magnetic moment of the
muon. It is also interesting to note that couplings of this

FIG. 2. The 8Be signal region, along with current constraints
discussed in the text (gray) and projected sensitivities of future
experiments in the ðmX; εeÞ plane. For the 8Be signal, the other
couplings are assumed to be in the ranges given in Eq. (10); for all
other contours, the other couplings are those of a dark photon.
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magnitude, albeit in an axial vector case, may resolve a
3.2σ excess in π0 → eþe− decays [34,35].
To confirm the 8Be signal, the most similar approach

would be to look for other nuclear states that decay to
discrete gamma rays with energies above 17 MeV through
M1 or E1 electromagnetic transitions. Unfortunately, the
8Be system is quite special and the 8Be� and 8Be�0 states
yield gamma rays that are among the most energetic of all
the nuclear states [36].
Nevertheless, there are myriad opportunities to test and

confirm this explanation, including reanalysis of old data
sets, ongoing experiments, and many planned and future
experiments, including DarkLight [37], HPS [38], LHCb
[39],MESA[40],Mu3e [41],VEPP-3 [42], and possibly also
SeaQuest [43] and SHiP [44]. The 8Be signal region and
expected sensitivities of these experiments are shown in
Fig. 2. It will also be important to embed the protophobic
gauge boson in UV-complete extensions of the standard
model, a task made challenging by the wealth of data cons-
training new physics at the ∼10 MeV energy scale. Further
details about the existing constraints, prospects for the future,
and UV completions will be presented elsewhere [45].
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