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The proposed satellite test of the equivalence principle (STEP) will detect possible violations of the weak
equivalence principle by measuring relative accelerations between test masses of different composition
with a precision of one part in 1018. A serendipitous by-product of the experimental design is that the
absolute or common-mode acceleration of the test masses is also measured to high precision as they
oscillate along a common axis under the influence of restoring forces produced by the position sensor
currents, which in drag-free mode lead to Newtonian accelerations as small as 10−14 g. This is deep inside
the low-acceleration regime where modified Newtonian dynamics (MOND) diverges strongly from the
Newtonian limit of general relativity. We show that MOND theories (including those based on the widely
used “n family” of interpolating functions as well as the covariant tensor-vector-scalar formulation) predict
an easily detectable increase in the frequency of oscillations of the STEP test masses if the strong
equivalence principle holds. If it does not hold, MOND predicts a cumulative increase in oscillation
amplitude which is also detectable. STEP thus provides a new and potentially decisive test of Newton’s law
of inertia, as well as the equivalence principle in both its strong and weak forms.
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Introduction.—Newtonian physics (including the
Newtonian limit of general relativity) fails badly on the
scales of galaxies and galaxy clusters, where it predicts
much smaller velocities than are actually observed. The
discrepancy is widely attributed to gravitational attraction
from dark matter (DM), but the implied DM density is 5
times that of all known standard-model (baryonic) matter in
the Universe, and no DM candidates have yet been detected
either directly (in laboratory experiments) or indirectly (by
means of decays or annihilations that could contribute to
astrophysical backgrounds), despite decades of searching
[1]. An alternative, called modified Newtonian dynamics
(MOND), is to modify either Newton’s law of gravitation
or the law of inertia for accelerations less than a0 ≈ cH0 ≈
10−10 ms−2 [2–4]. The gravitational implementation of
MOND implies a modification of general relativity, in
principle [5], while the inertial one entails modifying the
standard kinetic term of Lagrangian mechanics, which
would affect not only gravitational phenomena but those
generated by all of the other fundamental interactions as
well [6].
Either way, it is plainly desirable to test MOND away

from the astrophysical context in which it was conceived.
We consider here the satellite test of the equivalence
principle (STEP), in which pairs of test masses with
superconducting coatings orbit Earth in free fall, their
motions along a common axis monitored to high precision
by superconducting quantum interference device (SQUID)
magnetometers [7]. STEP is designed to detect differences
in acceleration between test masses of different composi-
tion, which would violate the weak equivalence principle
(WEP). MOND is known to satisfy the WEP [8], so such a

test might not appear to be relevant at first glance. However,
STEP is designed so that differential and common
accelerations are measured by separate SQUIDs, with a
common-mode sensitivity of 10−18 g in drag-free mode [9].
Furthermore, the SQUID circuits exert small restoring
forces on the test masses, causing them to oscillate
with periods of order 1000 s and local Newtonian
accelerations no larger than 10−13 ms−2, well below a0.
The possibility thus arises of using STEP simply as
a way to check on whether or not a test mass on the
end of a spring is governed by Newtonian or MOND-like
dynamics in the low-acceleration regime. Full technical
details on the experiment are found in Refs. [7,9],
and its current status and scientific motivation were
recently discussed in Ref. [10]. Our main conclusion
in this Letter is that STEP has the unique capability
to provide a new and potentially decisive test, not only
of the WEP, but of the strong equivalence principle
(SEP), and of Newton’s law of inertia itself. The revival
of the STEP mission (currently dormant due to a lack of
funding) should therefore be a top priority in fundamental
physics.
Although MOND fulfills the WEP, the SEP is almost

certainly violated if the modifications involve only the
gravitational sector [8]. Within the inertial implementation
of MOND, the status of the SEP is still an open issue [6,11].
Thus, test-mass behavior may be affected by STEP’s
acceleration relative to an inertial frame. Since this “exter-
nal acceleration” is large compared to a0, the dynamics
may be close to Newtonian, even if “internal” accelerations
are much smaller than a0. This is referred to as the external
field effect (EFE), and it is a major reason why existing

PRL 117, 071103 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

12 AUGUST 2016

0031-9007=16=117(7)=071103(5) 071103-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.117.071103
http://dx.doi.org/10.1103/PhysRevLett.117.071103
http://dx.doi.org/10.1103/PhysRevLett.117.071103
http://dx.doi.org/10.1103/PhysRevLett.117.071103


proposals for laboratory tests of MOND have not been
regarded as conclusive to date [12,13].
An important step was taken by Ignatiev [14,15], who

showed that EFEs could be minimized on Earth during
specific periods of the year. An improvement on this idea
was suggested in Ref. [16]. A simpler approach has
recently been proposed by Das and Patitsas [17], who
made use of free falling laboratories and assumed the
validity of the SEP. Under these conditions, they showed
that MOND-like predictions could easily be differentiated
from their Newtonian counterparts for some specific
experiments. In what follows, we apply a similar analysis
to STEP, initially assuming that SEP is valid. However,
given that the SEP should not generally be assumed in the
context of MOND, we go further and allow for the
possibility of SEP violation, explicitly including EFEs in
our calculations. This requires us to treat MOND-like
effects in noninertial coordinate systems in some detail—
for the first time, as far as we are aware.
MOND with the SEP.—We assume, to begin with, that

the SEP is valid, so that the outcome of any experiment
performed within the “local” (internal) STEP frame is
independent of the acceleration and space and time location
of the spacecraft itself relative to an external inertial frame
[8,18,19]. Though the STEP payload is complex, the
kinematics of the test masses is simple. The presence of
magnetic fields due to the currents in the superconducting
circuits leads to springlike restoring forces with typical
periods of approximately 1000 s and nominal amplitudes
of 10−10–10−8 m relative to the spacecraft during normal
drag-free operation [9,20]. Thus, the maximum Newtonian
acceleration of the test masses with respect to the STEP
frame is of order 10−15–10−13 ms−2, far below the MOND
scale a0. In its inertial formulation, MOND specifies the
force ~F acting on a body of inertial mass mi as

~F ¼ miμ

�j~aj
a0

�
~a; ð1Þ

where μðxÞ is the interpolating function, whose precise
form is not yet known, but which must go over to μðxÞ ≈ 1
when x ≫ 1 (Newtonian regime) and μðxÞ ≈ x when x ≪ 1
(deep MOND regime).
Given that the accelerations of the test bodies with

respect to a local frame in drag-free mode are at least 3
orders of magnitude below the MOND scale, we are in the
deep MOND regime and μðxÞ ≈ x, regardless of the
specific choice of MOND theory. We orient our internal
frame such that one axis (ẑ, say) coincides with the
direction of motion of a given pair of test masses and
identify its origin with the equilibrium point of the effective
restoring force. Equation (1) then gives for z > 0

̈z̄þ
ffiffiffiffiffi
a0
z0

r
ω

ffiffiffī
z

p ¼ 0; ð2Þ

where overdots denote time derivatives, z̄≐z=z0 is normal-
ized displacement, z0 is the amplitude of the oscillations,
and ω is their Newtonian frequency (defined in terms of the
inertial mass). We choose initial conditions at the point of
maximum displacement such that z̄ð0Þ ¼ 1 and _̄zð0Þ ¼ 0.
From symmetry, it is sufficient to analyze the case where
z > 0. Restoring forces guarantee that the motion is still
oscillatory and its amplitude remains fixed. The magnitude
of the acceleration is larger than in the Newtonian case
[z̄NðtÞ ¼ cosðωtÞ] due to the asymptotic property of μðxÞ,
leading to shorter oscillation times.
Equation (2) can be solved numerically or analytically in

terms of hypergeometric functions, with the results as
shown in Fig. 1. Note that the amplitude of motion
influences the period of the system [from the symmetry
of the problem, it is simply 4t0, where z̄ðt0Þ ¼ 0]. Thus, the
oscillation frequency for a given amplitude is a natural
choice of a physical observable. We shall come back to this
issue later in this section.
We now consider the scenario in which the SEP is still

satisfied, but in which amplitudes can take arbitrarily large
values up to the hard limit (of the order of millimeters)
imposed by the experimental design [21]. In this case,
accelerations will exceed the MOND scale a0, so that
Eq. (2) no longer holds. To make predictions, it is then
necessary to choose a specific interpolating function μðxÞ.
Historically, spiral galaxy rotation curves have been well fit
with the so-called simple μ function μ1ðxÞ ¼ x=ð1þ xÞ [4].
Another common choice, the “standard interpolating func-
tion” μ2ðxÞ ¼ x=ð1þ x2Þ1=2, is more compatible with Solar
System data [22]. Both μ1ðxÞ and μ2ðxÞ belong to an “n
family” of functions μnðxÞ ¼ x=ð1þ xnÞ1=n, with n ≥ 1,
and observations on both galactic and Solar System scales
can be fit with combinations of the cases n ¼ 1 and n ¼ 2
[4]. Such functions are, however, disfavored by recent
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FIG. 1. Numerical integration of Eq. (2) for different ampli-
tudes of oscillation of the STEP test masses (initial conditions),
assuming that the SEP is valid within MOND and that drag-free
conditions are maintained. Oscillation frequency depends on
amplitude (but remains fixed for a given choice of initial
condition) and differs strongly from its Newtonian counterpart
[z̄NðtÞ ¼ cosðωtÞ] in every case.
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Cassini data, which prefer n ≳ 3 [11,23]. An alternative is
the interpolating function derived by Bekenstein in the
context of what is so far the only fully covariant gravita-
tional formulation of MOND, tensor-vector-scalar (TVS)
theory, μðxÞTVS ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4x
p

− 1Þ=ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4x

p þ 1Þ [5,23].
Strong observational constraints on this version of
MOND, as well as the more phenomenological n family,
have now been reported in Ref. [24].
It should be stressed that all of these constraints have

assumed a gravitational formulation of MOND, and they do
not necessarily apply in the context of MOND as modified
inertia. For a comprehensive test of the MOND hypothesis,
it is important to compare the predictions of both for-
mulations with experimental data using the same interpo-
lating functions. Thus, for specificity, we work in what
follows with μ2 and μTVS [25]. From Eq. (1) one can show
that, for z > 0, the physically relevant equation of motion
now for μ2 is

̈z̄þ 1ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z̄2ω4 þ z̄ω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω4z̄2 þ 4a20

z20

svuut ¼ 0; ð3Þ

while for μTVS one gets

̈z̄þ ω2z̄þ
ffiffiffiffiffi
a0
z0

r
ω

ffiffiffī
z

p ¼ 0: ð4Þ

Numerical integration of Eqs. (3) and (4) leads to the results
shown in Fig. 2. Note that μ2 converges more quickly than
μTVS to the Newtonian regime, so that they should be easily
distinguishable. As expected, the closer to the Newtonian
regime (higher amplitudes) the smaller the magnitude of
MOND-like effects. In particular, for μ2 with z0 ≃ 1 mm, it
can be verified numerically that the oscillation period is
reduced by about 10−3 s relative to Newtonian expect-
ations. This would, however, still be readily observable due

to cumulative effects from the STEP’s uninterrupted 106 s
of data collection [9].
We now come back to the issue of the dependence of the

frequency of the system on its amplitude (the initial
condition) when the SEP holds. This is important since
periods of oscillation are easy-to-measure observables in
this context. (Accelerations near the turning points are also
good physical observables since there j̈z − ̈zN j ≫ 10−18 g
for μ2 and μTVS.) Figure 3 summarizes this relationship for
the whole range of amplitudes the STEP may have with
respect to μ2 and μTVS. As already indicated by Figs. 1 and
2, μ2 leads to very different predictions when compared to
μTVS, and for small amplitudes the MOND-like frequencies
are very different from their Newtonian counterparts.
MOND without the SEP.—SEP violation in the present

context means that the internal dynamics of the system (i.e.,
the springs and test masses) may be influenced by external
properties of the laboratory (i.e., the spacecraft), such as its
acceleration with respect to an inertial frame [18]. The first
step towards determining MOND’s predictions under these
circumstances is to derive the equations of motion in
noninertial frames. This point is yet unsettled [14], and
thus what one could do is to conceive models for them. In
this regard, let us simply assume that the vectorial sum of
accelerations is valid within MOND.
Consider three reference systems, Sin, S0, and S, such that

Sin is an inertial system, S0 only translates with respect to Sin,
and S has a coincident origin with S0 and rotates with respect
to it with angular velocity ~Ω. The total acceleration of a test
particle of inertial mass mi with respect to Sin can then be

written ~ain ¼ ~a0 þ ~aþ ~b, where ~a is its acceleration relative
to S, ~a0 is the acceleration of S0 with respect to Sin, and

~b ¼ _~Ω × ~rþ 2 ~Ω × _~rþ ~Ω × ð ~Ω × ~rÞ takes into account all
acceleration terms related to the rotation of S (see, e.g.,
Ref. [26]); ~r is the radius vector fromS to the test particle and
_~r its velocity. Multiplying ~ain by miμðain=a0Þ, with

FIG. 2. Numerical integration of Eqs. (3) and (4), again
assuming that the SEP is valid within MOND (but no longer
assuming drag-free conditions). The differences between μ2
[solid (gray) and dashed lines] and μTVS (dotted and dot-dashed
lines) are detectable for all amplitudes up to order ∼ millimeters.
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FIG. 3. Period dependence on the amplitude (initial conditions)
for μ2 and μTVS, assuming no SEP violation. Both interpolating
functions agree for small z0’s since there accelerations are much
smaller than a0, so that both converge to the same asymptotic
(deep MOND) limit.
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ain≐j~ainj, leads with the help of Eq. (1) to the relationship
between the acceleration of a test particle relative to a
noninertial frame and the forces ~F present there. When
applied to STEP, part of ~F=mi is related to the gravitational
field of Earth. Assuming that the test particles fall at the
same rate as the setup allows us to identify such terms
with the motion of the STEP center of mass (c.m.). Thus,
~F=mi ¼ ~Fc:m:=M þ ~Fres=mi þ ~N=mi, ~Fres is the effective
restoring force on the test particles discussed before, where
M is the total mass of the payload and ~N is the sumof normal
forces, such that the test particles remain along a given
axis. Applying the relationship of forces and acceleration
discussed above to the motion of the STEP center of mass
with respect to S leads to (y≐j~a0 þ ~ac:m: þ ~bc:m:j=a0)

~Fres

mi
þ

~N
mi

≈ μðyÞδ~al þ y
∂μðyÞ
∂y

δ~al · ~ac:m:

j~ac:m:j2
~ac:m:; ð5Þ

where δ~al≐̈~rl þ 2 ~Ω × _~rl, ~rl is the position of the test particle
as measured in a local frame freely falling with STEP, Sl,
and y≈j~ac:m:j=a0 (because, when the payload freely falls,
j~ac:m:j≃10ms−2, j~a0j≃j~ac:m:j=1000, and j~bc:m:j≃j~ac:m:j=10,
so that y ≫ 1), all related to the acceleration of the center
of mass of STEP. Following our previous definition, we
take the dynamics of the test particle of interest in the z
direction. From the consideration that ~Nmust exactly cancel
out all of the perpendicular terms to ẑ in Eq. (5) and
averaging external quantities over a full orbit (since the
only physically meaningful analyses should come from
cumulative effects after multiple orbits [9]), we arrive at

̈z̄ ≈ −
ω2z̄

μðyÞ þ y
2

∂μðyÞ
∂y

ð6Þ

since, due to the oscillatory nature of ~ac:m: with respect
to Sl, hða∥c:m:Þ2=j~ac:m:j2i ¼ 1=2, while ha∥c:m:a⊥c:m:i ¼ 0,
with a∥c:m:≐~ac:m: · ẑ and ~a⊥c:m:¼ ~ac:m:−a∥c:m:ẑ. (Here,
ha∥c:m:a⊥c:m:i¼0 is physically equivalent to neglecting
Coriolis accelerations when compared to the restoring ones,
in agreement with Ω ≪ ω.) Numerical integration confirms
that nonaveraged analyses of Eq. (5) for the ẑ direction
converge to those ones based on Eq. (6) after only two to
three orbits, thus justifying the latter.
Over the course of multiple orbits, one can constrain the

denominator of Eq. (6), and thus the function μðyÞ, by
means of precise distance measurements. Let us first
analyze this for the n family of interpolating functions.
Since y ≫ 1 (the spacecraft is in free fall, which corre-
sponds to y≃ 1011), we have μnðyÞ ¼ 1 − 1=ðnynÞ.
Solving Eq. (6), we find that the MOND-like solution
differs from the Newtonian one by sinðωtÞðn − 2Þωt=
ð4nynÞ. Thus, assuming a continuous observation period
of order days [9], cumulative effects give rise to a physical
difference between MOND-like and classical amplitudes of
103z0jn − 2j=ðnynÞ. (Accelerations are not good physical
observables in this context precisely due to their lack of

cumulative effects.) Recalling that STEP’s precision for
position measurements associated with periods of the order
of 1000 s and acceleration sensitivity of 10−18 g is of
approximately 10−13 m [9,27], we conclude that detectable
amplitude changes are possible when z0jn − 2j=
ðnynÞ ≳ 10−16. For z0 < 10−4 m, there is no n > 1 that
fulfills the above-mentioned inequality. Therefore, STEP is
only able to constrain interpolating functions associated
with a combination of n ¼ 1 and n ¼ 2 if z0 > 10−4 m. For
z0 ≃ 10−3 m, STEP could constrain up to n ≲ 1.3.
A much stronger constraint is obtained in the context of

TVS, whose interpolating function tends to μðyÞTVS ≈ 1 −
1=y1=2 for large y’s. This leads in turn to z0=y1=2 ≳ 10−16,
which is satisfied for z0 > 10−10 m—surely the case for
STEP. Therefore, STEP will easily be capable of falsifying
Bekenstein’s interpolating function in the context of modi-
fied inertia, cross-checking the results from the Cassini
spacecraft, which have ruled it out in the scope of modified
gravity [23].
Conclusions and discussion.—Because of the cumula-

tive nature of its observations as well as its intrinsic
sensitivity, STEP constitutes a powerful test of both
MOND (and by extension the dark matter paradigm)
and the SEP. (Indeed, we find that MOND in its modified
inertia formulation is inextricably linked to SEP violation,
and a test of one must also consider the other.) In particular,
we have shown that any difference in the frequency of
oscillation of the STEP test masses relative to Newtonian
expectations (but not in their amplitude) would imply the
validity of the SEP within MOND. Conversely, a difference
in amplitude but not frequency would imply a violation of
the SEP within MOND. No observable difference in
frequency or amplitude can be interpreted either as a
confirmation of Newton’s second law and a falsification
of MOND (if the SEP is valid) or as a constraint on MOND
(with SEP violation). Both the widely used n family of
interpolating functions and the TVS formulation of MOND
can be constrained or excluded across a significant portion
of the theoretical parameter space, even when MOND-like
effects are “screened” by violations of the SEP.
These conclusions are intrinsically related to STEP’s

state of motion (free fall). Nevertheless, nothing precludes
measurements in Earth-based laboratories, for instance,
during STEP calibration tests. In this case, though, MOND
analyses change because the gravitational acceleration of
Earth on the experiment can always be eliminated, thus
decreasing y. More specifically, now y ≈ j~bc:m:j=a0 ≃ 108

(the average norm of the centrifugal acceleration of a
particle at rest on Earth, the largest kinematic acceleration
now present, is of the order of 10−2 ms−2). In principle, one
could allow the experiment to run indefinitely, but let us
assume it also operates for some days. Given that the
position sensitivity is an intrinsic property of the STEP [7],
for the n-family interpolating functions this also implies
z0jn − 2j=ðnynÞ ≳ 10−16, so that now n > 1 whenever
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z0 > 10−8 m. Larger n’s could also be investigated if the
experiment ran longer or had a higher intrinsic frequency ω
or a larger position sensitivity. The latter possibility might
be realized in the context of the STEP by increasing the
current in the SQUID circuits. Such an experiment might
even be carried out on the ground before launch, as a
“synergistic” test of MOND and the SEP (but not, of
course, the WEP). By contrast, Earth-based torsion balan-
ces, or the recently launched MICROSCOPE mission
[28,29], would not be ideal for testing Newton’s second
law since they mainly operate with test particles at
equilibrium, where the dynamics is suppressed.
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