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Topological mechanics and phononics have recently emerged as an exciting field of study. Here we
introduce and study generalizations of the three-dimensional pyrochlore lattice that have topologically
protected edge states andWeyl lines in their bulk phonon spectra, which lead to zero surface modes that flip
from one edge to the opposite as a function of surface wave number.
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Mechanical lattices with a perfect balance between the
number of degrees of freedom and the number of con-
straints (springs) with unit cells of appropriate internal
geometry exhibit zero-frequency modes at boundaries even
though they have very few if any zero modes (ZMs) in their
bulk [1,2]. The topological origin of these ZMs was
explained in Ref. [3], which introduced the framework
for a phononic version of topological band theory that is
well known in electronic contexts, including polyacetylene
[4], quantum Hall systems [5,6], and topological insulators
[7–12]. So far, attention has focused on one- [13] and two-
dimensional (2D) [14–17] model systems, such as the
generalized kagome lattice (GKL) [3]. In this paper, we
establish the fundamental result that three-dimensional
(3D) lattices exhibiting topological phonons can be
constructed and explore their properties. With current
3D-printing technology, it is already possible to construct
3D metamaterials of almost limitless complexity. Our work
provides templates for fabricating new materials with
unusual elastic and phononic properties. We introduce a
3D generalized pyrochlore lattice (GPL) with deformed
corner sharing tetrahedra, whose edges are occupied by
central-force springs, as depicted in Fig. 1. We show that
the bulk phonon spectrum of these lattices exhibit lines of
topologically protected ZMs, analogous to lines of touch-
ing bands in line-node semimetals [18–21] and gyroid
photonic crystals [22], that cause the number of protected
surface modes to undergo discontinuous jumps as a
function of surface wave number.
In 2D GKLs (see the Supplemental Material [23] for

background information), there are lattices whose bulk
vibrational spectrum is “fully gapped” at all wave vectors q
except for the required acoustic ZMs at q ¼ 0. These
lattices fall into topological classes distinguished by topo-
logical invariants characterizing their reciprocal-space band
structure, and they exhibit topological zero-frequency edge
modes whose number on a given surface is determined by
bulk topological invariants and local lattice conformation at
that surface. In GKLs, the transition between topologically
distinct phases is marked by the existence of a line in the
Brillouin zone (BZ) along which normal-mode frequencies

vanish. This line of ZMs is a consequence of the existence
of straight lines of bonds (filaments) that carry a state of self
stress (SSS) in which the bonds are under tension but site
forces vanish. The Maxwell-Calladine counting rule (see
below) [24,25] applied with periodic boundary conditions
then guarantees corresponding ZMs.
We find that 3D GPLs have a richer structure than 2D

GKLs. Like GKLs, they exhibit gapless bulk modes
associated with localized SSSs: Arrays of straight parallel
lines of SSSs—six in the original pyrochlore lattice (PL)
aligned along the tetrahedral edges—have associated
planes of ZMs in reciprocal space aligned perpendicular
to the array filaments, and flat planes of SSSs—four in the
PL along the tetrahedral faces—have associated perpen-
dicularly aligned lines of ZMs in reciprocal space. As in the
GKL, the bulk ZMs on these planes (lines) can be lifted to
nonzero frequency by distorting the lattice to remove the
straight lines (flat planes) of bonds. However, unlike in the
GKL, there are lines of bulk ZMs in reciprocal space that
are protected by an integer topological invariant defined on
a path that encircles them, and that influence the number
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FIG. 1. The (a) PL and the GPL in the (b) X1 and (c) X−1
conformations (see text). The (green) arrow represents the (1,1,1)
direction. (d) The unit cell of (a) viewed along the −n̂ direction.
The (red) dots with the (red) numbers mark the basis sites.
The solid (dashed) arrows designate the bond vectors ab (a0b) of
the internal (external) bonds.
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and location of surface ZMs. These are the mechanical
analog of Weyl lines (WLs) that exist in electronic [18–21]
and photonic [22] systems. Analogous Weyl-Dirac points
[19,26,27] can also be present in 2D, as in the electronic
spectra of graphene [28–30] and phonon spectra in
deformed square lattices [16] and 2D models of jammed
matter [17].
Our GPL is based on the PL with 4-site, 12-bond unit

cells. Our standard reference unit cell has sites at the
four corners of a tetrahedron at the basis positions
r1 ¼ 1

2
ð1; 1; 0Þ, r2 ¼ 1

2
ð0; 1; 1Þ, r3 ¼ 1

2
ð1; 0; 1Þ, and r4 ¼

ð0; 0; 0Þ and bonds as shown in Fig. 1(d). Note that this
cell lacks inversion symmetry, as do all other unit cells in
GPLs, and, as a result, it has a nonvanishing dipole moment
when charges þ3 are placed at its sites and charges −1 at
the center of its bonds. The primitive translation vectors of
the lattice are T1 ¼ ð1; 1; 0Þ, T2 ¼ ð0; 1; 1Þ, and T3 ¼
ð1; 0; 1Þ. There are six internal (external) bonds with bond
vectors a1 to a6 (a01 to a06). The triangular faces of lattice
tetrahedra lie in four sets of parallel planes and form
kagome lattices in each. One of the four sets has its layer
normal parallel to the (1,1,1) direction. In the GPL, this
latter set of planes will play a distinguished role, and we
will refer to it as the GKL planes.
In the PL, there are six sets of straight filaments, built

from the bonds on the six edges of the tetrahedra, that carry
SSSs. Following Ref. [3], our generalization is designed to
convert specific straight filaments into “zigzagged” ones
that do not carry SSSs. In the GPL, the positions of the
basis sites are displaced relative to those of the PL,
ri → ri þ δriðXÞ, where

δr1ðXÞ ¼ x1
ffiffiffi
3

p
ê1 − x2â3; ð1aÞ

δr2ðXÞ ¼ x2
ffiffiffi
3

p
ê2 − x3â1; ð1bÞ

δr3ðXÞ ¼ x3
ffiffiffi
3

p
ê3 − x1â2; ð1cÞ

δr4ðXÞ ¼ −zn̂; ð1dÞ
with X≡ðx1;x2;x3;zÞ, âj¼aj=jajj, êj ¼ ðaj × n̂Þ=jaj × n̂j,
and n̂ the unit vector in the (1,1,1) direction. The parameter
z determines the vertical position of site 4 relative to the
GKL planes. If z ≠ 0 and x1 ¼ x2 ¼ x3 ¼ 0, the three sets
of filaments outside the GKL planes (comprised of bonds
indexed by 4, 5, and 6, respectively) are zigzagged whereas
the three sets of filaments within the GKL planes (com-
prised of bonds indexed by 1, 2, and 3, respectively) are still
straight. A nonzero xn converts the straight filament parallel
to ân to a zigzag one, cf. Ref. [3]. We have also studied
more general versions of our model lattice in which sites 1
to 3 can adopt positions outside the GKL planes, thereby
destroying their independent SSSs. For simplicity, how-
ever, we will focus on the model lattices described by
Eq. (1). More specifically, we will focus on the two lattice
conformations corresponding to the parameter settings

X ¼ X1 ≡ ð0.1; 0.1; 0.1; 0.1Þ and X ¼ X−1 ≡ ð−0.1; 0.1;
0.1; 0.1Þ; see Fig. 1. The GKL planes of these lattices
are equivalent to the GKL conformations depicted in
Figs. 2(c) and 2(e) of Ref. [3], respectively.
Any d-dimensional central force elastic network con-

sisting of periodically repeated unit cells with n sites and nB
bonds is governed by the generalized Calladine-Maxwell
theorem [1,24,25] n0ðqÞ − sðqÞ ¼ dn − nB at each wave
vector q in the BZ. It relates the number n0ðqÞ of ZMs and
the number sðqÞ of SSSs to the invariant properties n and
nB of the unit cell and follows from the properties of the
nB × dn compatibility matrix CðqÞ relating bond displace-
ments uðqÞ to bond extensions eðqÞ via CðqÞuðqÞ ¼ eðqÞ
and the dn × nB equilibrium matrixQðqÞ ¼ C†ðqÞ relating
bond tensions tðqÞ to site forces fðqÞ viaQðqÞtðqÞ ¼ fðqÞ.
ZMs constitute the null space of CðqÞ and SSSs the null
space of QðqÞ. When all masses and spring constants are
set to unity, as we have done here, the dynamical matrix
governing the phonon spectrum is simply DðqÞ ¼
QðqÞCðqÞ. Under periodic boundary conditions, the
GPL satisfies dn ¼ nB; i.e., it is a Maxwell lattice [1] in
which at each q including q ¼ 0, there is always one SSS
for each ZM. The compatibility, equilibrium, and dynami-
cal matrixes are all 12 × 12 matrixes (see the Supplemental
Material for details [23]).
The elastic energy density can be expressed [31] in terms

of the six-dimensional vector of symmetric strains U ¼
ðuxx; uyy; uzz; uxy; uxz; uyzÞ and the 6 × 6 Voigt matrix K:
f ¼ 1

2
UT ·K ·U. The matrix K is determined by the

normalized eigenvectors of the null space of Qðq ¼ 0Þ
[1]. The PL has six q ¼ 0 SSSs, with nonzero overlap with
affine strain that stabilize all six independent strains. For X1

and X−1, there are no straight filaments, but there are three
q ¼ 0 SSSs paired with the three required q ¼ 0 translation
ZMs. K has three positive and three zero eigenvalues, the
latter with associated eigenvectors corresponding to three
zero-energy elastic distortions of the unit cell called Guest
modes [32]. For X1, the three Guest modes are proportional
to ð2; 0; 0; 0; 0;−1Þ, ð0; 2; 0; 0;−1; 0Þ, or ð0; 0; 2;−1; 0; 0Þ.
For X−1, the Guest modes involve all components of U.
The topological properties of the phononic band struc-

ture of the GPL are determined by the C or Q matrixes [3].
The determinants of these matrices map a path in q space
onto a path in the complex plane. Because Q and C are
invariant under q → qþG for any reciprocal lattice (RL)
vectorG, any path in q space whose start and end points are
separated by a RL vector will map onto a closed path in the
complex plane. For simplicity, we focus on paths in q space
that are straight lines along the primitive vectors b1, b2, b3,
satisfying bi · Tj ¼ 2πδij, of the RL. The integer winding
numbers of the corresponding closed paths in the complex
plane are

mðq⊥;GÞ ¼
1

2πi

Z
G

0

dp
d
dp

LogDetQðq⊥; p;GÞ; ð2Þ
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where q⊥ specifies the components of q in the surface BZ
of the lattice plane defined by G, p is the component of q
along G, and G ¼ jGj. In practice, we calculate these
winding numbers numerically using Mathematica. In fully
gapped systems, the winding numbers are independent of
q⊥. In systems with Weyl singularities, they are not. We use
this fact to detect and map out Weyl singularities in the
GPL. The idea is to calculate the winding numbers for an
entire set of q⊥ ’s in a given surface BZ. For example, for
our integration along b1, we sweep the BZ that is spanned
by the unit vectors ĉ1;1 ¼ ðb1 × b2Þ=jb1 × b2j and
ĉ1;2 ¼ ðb1 × ĉ1;1Þ=jb1 × ĉ1;1j. Figure 2 compiles our
results for the winding numbersmiðq⊥Þ≡mðq⊥;G ¼ biÞ.
There is a qualitative difference between Xþ1 and X−1 in

the values and distribution of their winding numbers: For
X1, mi ¼ −1 throughout the surface BZ associated with
each bi. For X−1, boundaries determined by the projections
of WLs onto any given surface BZ divide the latter into
regions with different winding numbers. In addition to the
WLs, for both X1 and X−1 there is a twofold degenerate line
of ZMs along the (1,1,1) direction (that we verify by
diagonalizing D for q along n̂) whose winding number is
zero. This line is a consequence of the q⊥ ¼ 0 SSS of the

flat GKL planes in the GPL. In the more general version of
our GPL, alluded to above, this line splits up into two
oppositely charged WLs when the reference positions of
one of the basis sites 1, 2, or 3 is moved out of the GKL
plane. These WLs are separated by a distance proportional
to the distance of the respective sites from the GKL plane.
We can reconstruct the WLs in 3D from their projections

onto the 2D BZs defined by the bi’s shown in Fig 2: A point
on a projected line with coordinates ðq1; q2Þ in the plane
perpendicular to b1 is replaced by q ¼ pb̂1 þ q1ĉ1;1þ
q2ĉ1;2, where b̂1 ¼ b1=jb1j, and likewise for the projection
onto the plane perpendicular to b2. Then, we calculate the
intersections of the resulting manifolds. Finally, we discard
all intersection points whose projections onto the plane
perpendicular to b3 are incompatible with our results for
m3. Our results for the WLs in 3D are depicted in Fig. 3.
As follows from the previous paragraph, the only ZMs that
we encounter for X1 lie on a line along n̂. For X−1 there is in
addition a pair of WLs. These WLs do not form closed
loops but follow a path in the BZ between points separated
by a RL vector.
It is informative to compare our numerical results to

analytical predictions for the WLs. To this end, we consider
small deviations about the PL as parametrized by Xε ≡
ðε; ε; ε; εÞ and X−ε ≡ ð−ε; ε; ε; εÞ, and we expand detCðqÞ
in powers of the qi and ε. For both Xε and X−ε, the resulting
expansion is of the form

detC ¼ fð3ÞðqÞε3 þ fð4ÞðqÞε2 þ fð5ÞðqÞεþOðq6i Þ; ð3Þ

where the fðmÞðqÞ are different functions of mth order in qi
for Xε and X−ε that vanish for any q along n̂. We solve for
the wave vectors that are zeros of the right-hand side of
Eq. (3). For Xε, there is only one real solution that
corresponds to any q along n̂. For X−ε, there are additional
real solutions, which we display for ε ¼ 0.1 in Fig. 3. Note
the nice agreement at small q between the numerical and
analytical results for X1 and X−1.
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FIG. 2. Winding numbersm1,m2, andm3 for (a) X1 and (b)–(d)
X−1. q1 and q2 are the components of the respective q⊥ s. The
(red) polygons depict projections of the edges of the top and
equatorial surfaces of the BZ onto these planes. The black
polygon in (a) represents the surface BZ. The color-coding of
the shaded areas is as follows: pink corresponds to winding
number 1, white to 0, gray to −1, and black to −2. Yellow
indicates points where the numerical integration failed to con-
verge properly. The (brown) solid lines indicate the twofold
degenerate zero mode along the (1,1,1) direction. The (cyan) light
line indicates the ð1; 1;−1Þ direction (guide to the eye).

FIG. 3. WLs for X−1 traversing the (red) dedocahedron-shaped
BZ. The (black) points mark our numerical reconstruction of the
WLs, the (green) lines them stem from our analytical estimate.
ForX1, only the twofold degenerate (brown) line along the (1,1,1)
direction is present.
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Now, we turn to surface modes. In general, the total edge
index νðq⊥;GÞ ¼ n0ðq⊥;GÞ − sðq⊥;GÞ is the sum of a
local part νLðGÞ [1,3], which is independent of q⊥, and a
topological part νTðq⊥;GÞ. At free surfaces, sðq⊥;GÞ ¼ 0,
and νðq⊥;GÞ ¼ n0ðq⊥;GÞ. The local count is G ·RL=
ð2πÞ, where G is the outer normal to its lattice plane and
RL is the difference between the dipole moment of the
surface unit cell and that of the reference cell of
Fig. 1 (see Supplemental Material [23]). In systems without
Weyl singularities, the winding numbers mi are indepen-
dent of wave vector as mentioned above and define a
topological charge RT ¼ P

imiTi. For X1, in particular,
RT ¼ −ð2; 2; 2Þ. The topological surface count in these
systems is simply νTðGÞ ¼ G ·RT=ð2πÞ, independent of
q⊥. In systems with Weyl singularities, the topological
count νTðq⊥;GÞ ¼ mðq⊥;GÞ depends on q⊥ and is not
defined globally.
For simplicity, we focus here on surfaces whose normals

are parallel to primitive vectors bi of the RL. We calculate
the complex inverse penetration depths κðq⊥Þ by setting
q ¼ iκb1 þ q1ĉ1;1 þ q2ĉ1;2, and similarly for i ¼ 2, 3, and
solving for the roots of detCðiκ; q1; q2Þ ¼ 0. Positive
(negative) values of κ0 ≡ ReðκÞ correspond to ZMs that
decay in the direction of b1 (−b1) and that are, therefore,
localized on the surface with outer normal along −b1 (b1).
Figure 4 presents plots of κ0 and νT;i ¼ νTð−biÞ as a
function of q1 and fixed q2 ¼ 0.1 for our three surface
orientations and for X1 and X−1. For each X and bi, there
are positive and negative values of κ0 indicating localization
on both surfaces, but as required by the Calladine-Maxwell
theorem, there is always a total of three ZMs on the two
surfaces. For X1, the three κ0s are the same function of q1
for all bis. In addition νT;i ¼ 1 is independent of i. This
implies that νL;i ¼ νLð−biÞ ¼ 1 for every i. νL is a property
of a surface that does not change if the topological class is
varied by changing X. For X−1, the functions κ0ðq1Þ are
different for the different surfaces, and the number of

positive and negative values undergo discontinuous
changes in accord with similar changes in νT;iðq1Þ. At
the −b1 surface, νT1 takes on values of 2 and 1, and, as
required, the number of modes localized on the −b1 surface
changes from 2 to 1 and back again with the jumps in νT1.
Similarly, for the −b2 surface, νT;2 takes on values 0 and −1
and n0ðq1;−b2Þ values 1 and 0 (though the latter region is
relatively small), and for the −b3 surface, νT3 is zero almost
everywhere except for a very small region near the origin
where it is equal to 1 and ν3ðq1;−b3Þ is either 1 or 0. In the
Supplemental Material [23], we provide more detail about
the calculation of RL, and we show results for surfaces
perpendicular to the G ¼ �2πð1; 0; 0Þ RL vector. In this
case, four bonds must be cut to liberate a strip, and there are
four surface ZMs distributed between the two surfaces.
In conclusion, we have studied topological phonons in

3D in a generalized pyrochlore lattice. Our model lattice
displays distinct topological states and thereby underscores
the validity in 3D of the general theory for topological
phonons laid out in Ref. [3]. Together with the recent work
on generalized square lattices [16] and 2D models of
jammed matter [17], our work hints that Weyl singularities
are a common feature in Maxwell lattices and that the GKL
is special in that its unit cell does not provide enough
degrees of freedom to have them. The present work
indicates that the GPL is a candidate for detecting Weyl
lines in mechanical experiments on GPL-like metamaterials
which should become producible by 3D-printing technol-
ogies in the foreseeable future.
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