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Following an idea by Joyner et al. [Europhys. Lett. 107, 50004 (2014)], a microwave graph with an
antiunitary symmetry T obeying T2 ¼ −1 is realized. The Kramers doublets expected for such systems are
clearly identified and can be lifted by a perturbation which breaks the antiunitary symmetry. The observed
spectral level spacings distribution of the Kramers doublets is in agreement with the predictions from the
Gaussian symplectic ensemble expected for chaotic systems with such a symmetry.
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Random matrix theory has proven to be an extremely
powerful tool to describe the spectra of chaotic systems
[1–4]. For systems with time-reversal symmetry (TRS) and
no half-integer spin in particular, there is an abundant
number of theoretical, numerical, and experimental studies
showing that the universal spectral properties are perfectly
well reproduced by the corresponding properties of the
Gaussian orthogonal random matrix ensemble (GOE) (see
Ref. [5] for a review). This is the essence of the famous
conjecture by Bohigas-Giannoni-Schmit [3], which has
received strong theoretical support; see, e.g., Refs. [6–8].
For systems with TRS and half-integer spin and systems
with no TRS, the Gaussian symplectic ensemble (GSE) and
the Gaussian unitary ensemble (GUE), respectively, hold
instead. There are three studies of the spectra of systemswith
broken TRS showing GUE statistics [9–11], all of them
applying microwave techniques. For the GSE, there is no
experimental realization at all up to now.Only by using that a
GSE spectrum is obtained by taking only every second level
of a GOE spectrum [1], GSE statistics has been exper-
imentally observed in a microwave hyperbola billiard [12].
In fact, GUE statistics may be observed even in systems

without broken TRS if there is a suitable geometrical
symmetry. One example is the billiard with threefold
rotational symmetry [13] with microwave realizations
[14,15]. Another example is the constant width billiard
[16], again with an experimental realization [17].
On the other hand, GOE statistics may be obtained in

billiards with a magnetic field if there is an additional
reflection symmetry [18]. This is because there exists an
antiunitary symmetry that combines time reversal with
reflection. To be able to observe GSE statistics in a system
without spin requires a similar nonconventional symmetry.
What is needed according to Dyson’s threefold way [19] is
an antiunitary symmetry T with the property that T2 ¼ −1.
This is sufficient to guarantee GSE statistics if the system is
chaotic [20]. In addition, it leads to Kramer’s degeneracy;

i.e., the application of T to an energy eigenfunction yields
an orthogonal eigenfunction with equal energy. A system
with such a symmetry was recently found in the form of a
quantum graph [21].
Quantum graphs were introduced by Kottos and

Smilansky [22] to study various aspects of quantum chaos.
The wave function on a quantum graph satisfies a one-
dimensional Schrödinger equation on each of the bonds
with suitable matching conditions (implying current con-
servation) at the vertices. Just as for quantum billiards, there
is a one-to-one mapping onto the corresponding microwave
graph. This analogy has been used in a number of experi-
ments including one on graphs with and without broken
TRS [11,23,24].
To realize graphs with GSE symmetry, the graph shown

in Fig. 1 (top) was proposed in Ref. [21]. It contains two
geometrically identical subgraphs but with phase shifts by
þπ=2 and −π=2, respectively, along two corresponding
bonds. The two subgraphs are connected by a pair of bonds
yielding a graph with a geometric inversion center. In
addition, there is another phase shift of π along one of the
two bonds but not the other one. This is the crucial
point: Because of this trick, the total graph is symmetric
with respect to an antiunitary operator T squaring to −1,
T2 ¼ −1, where

Tψðx1Þ ¼ þψ�ðx2Þ;
Tψðx2Þ ¼ −ψ�ðx1Þ; ð1Þ

i.e., if ψ satisfies the Schrödinger equation as well as
the vertex conditions, then the same applies to Tψ . Here, x1
is a coordinate in subgraph 1 and x2 the corresponding
coordinate (related by inversion) in subgraph 2. Applying
Eq. (1) twice shows T2 ¼ −1.
A complementary approach shall be given establishing a

direct correspondence between the experiment and a spin
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1=2 system. The wave function in a quantum graph is
subject to two constraints, continuity at the vertices and
current conservation. In a microwave graph, these con-
straints correspond to the well-known Kirchhoff rules

governing electric circuits. They lead to a secular equation
system having a solution only if the determinant of the
corresponding matrix vanishes,

det½hðkÞ� ¼ 0; ð2Þ

where the matrix elements of hðkÞ are given by

hijðkÞ ¼
8
<

:

−
P

n≠i
CincotðklinÞ i ¼ j;

Cije−{φij ½sinðklijÞ�−1 i ≠ j;
ð3Þ

where Cij ¼ 1, if nodes i and j are connected, and Cij ¼ 0,
otherwise. lij is the length of the bond connecting nodes i
and j. φij is a phase resulting, e.g., from a vector potential
and breaks TRS if present. The equation holds for
Neumann boundary conditions at all nodes, the situation
found in the experiment. Details can be found in Ref. [25].
The solutions of the determinant condition (2) generate the
spectrum of the graph.
Applied to the graph of Fig. 1, the secular matrix hðkÞ

may be written as

h ¼ hdis þ v; ð4Þ

where hdis is the secular matrix for the disconnected
subgraphs, and v describes the connecting bonds. It is
convenient to introduce an order of rows and columns
according to f1; 2; � � � ; n; 1̄; 2̄; � � � ; n̄g, where the numbers
without a bar refer to the vertices of subgraph 1, and the
numbers with a bar to those of subgraph 2. hdis may then be
written as

hdis ¼
�
h0 ·

· h�0

�

; ð5Þ

where h0 and h�0 are the secular matrices for each of the two
subgraphs, respectively. Since the only difference between
the subgraphs is the sign of the π=2 phase shift in one of the
bonds, their secular matrices are just complex conjugates of
each other; see Eq. (3). Assuming for the sake of simplicity
that there is just one pair of bonds connecting node 1 with
node 2̄, and node 1̄ with node 2, the matrix elements of v
are given by

v11 ¼ v22 ¼ v1̄ 1̄ ¼ v2̄ 2̄ ¼ −cotðklÞ; ð6Þ

v12̄ ¼ v2̄1 ¼ −v21̄ ¼ −v1̄2 ¼ ½sinðklÞ�−1; ð7Þ

vij ¼ vī j̄ ¼ vij̄ ¼ vīj ¼ 0; otherwise; ð8Þ

where l is the length of the bond connecting 1 with 2̄ and 1̄
with 2. The generalization to a larger number of bond pairs
is straightforward.

FIG. 1. (a) Sketch of the graph proposed in Ref. [21] to study
GSE statistics without spin. The four arrows denote bonds along
which additional phases are acquired. (b) Schematic drawing of
one of the realized microwave graphs. Subgraph 1 is highlighted
by a gray background. The dashed lines correspond to phase
shifters with variable lengths. The two subgraphs contain micro-
wave circulators at nodes 7 and 7̄, respectively, with opposite
sense of rotation. The nodes marked by “O” are closed by open
end terminators. They were used to allow for an easy realization
of alternative graphs. Subgraphs 1 and 2 are connected at nodes 0
and 0̄, respectively, to ports P1 (P2) of the VNA. (c) Photograph
of the graph sketched in (b) consisting of T junctions, semirigid
cables with identification tags, circulators, open end terminators,
and phase shifters with step motors. Again, subgraph 1 is
highlighted.

PRL 117, 064101 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

5 AUGUST 2016

064101-2



Changing now the sequence of rows and columns to
f1; 1̄; 2; 2̄; � � � ; n; n̄g, the resulting 2n × 2n matrix ~hðkÞ
may be written in terms of an n × n matrix with quaternion
matrix elements,

½ ~hðkÞ�nm¼½Reðh0Þnmþvnm�1− Imðh0Þnmτz−vnm̄τy; ð9Þ

where

1 ¼
�
1 ·

· 1

�

; τz ¼
�−{ ·

· {

�

; τy ¼
�

· −1
1 ·

�

:

ð10Þ
The determinant is not changed by this rearrangement of
rows and columns, det½hðkÞ� ¼ det½ ~hðkÞ�. The matrix ele-
ments ½ ~hðkÞ�nm commute with Cτy , where C denotes the
complex conjugate, and, hence, the whole matrix com-
mutes with T ¼ diagðCτy; � � � ; CτyÞ, where T squares to
−1, T2 ¼ −1. This is exactly the situation found for spin
1=2 systems, and just as in such systems, a twofold
Kramers degenerate spectrum is expected showing the
signatures of the GSE provided the system is chaotic;
see, e.g., Chap. 2 of Ref. [4].
The requirements defined by Joyner et al. [21] to realize

graphs with GSE symmetry pose some challenges. Since
we did not know of a simple way to achieve phase shifts of
�π=2 along the bonds, we instead built two geometrically
identical subgraphs but with two circulators of opposite
sense of rotation within the two subgraphs. A circulator is a
T-shaped microwave device introducing directionality:
Microwaves pass from port 1 to port 2, from port 2 to
port 3, and from port 3 to port 1. The result is the same as
with the �π=2 shifts: The circulators break TRS, resulting
in identical GUE spectra for the two disconnected sub-
graphs but with an opposite sense of propagation within the
respective subgraphs. Again, the two subgraphs may, thus,
be described in terms of a secular matrix h0 and its complex
conjugate h�0, respectively.
The phase difference between the two connecting bonds

is adjustable by means of mechanical phase shifters, which
in reality, however, do not change the phase but the length.
This approach has the shortcoming that for a given length
change Δl, the phase shift Δφ depends on frequency ν:

Δφ ¼ kΔl ¼ 2πν

c
Δl; ð11Þ

where k is the wave number, and c is the vacuum velocity of
light. l ¼ nl0 is the optical length where l0 is the geomet-
rical length, and n ¼ 1.43 the index of refraction of the
dielectric within the coaxial cables.
Figure 1(b) shows the schematic drawing of one realized

graph and Fig. 1(c) the photograph of the corresponding
experimental realization. The bonds of the graphs were
formed by coaxial semirigid cables (Huber & Suhner

EZ-141) with SMA connectors coupled by T junctions
at the nodes. The phase shifters (ATM, P1507) were
equipped with motors to allow for an automatic stepping.
Reflection and transmission measurements were performed
with an Agilent 8720ES vector network analyzer (VNA)
with the two ports P1 and P2 at equivalent positions of the
two subgraphs. The corresponding reflection and trans-
mission amplitudes will be denoted in the following by Sij,
where i, j ¼ 1, 2 is defined by the port. The operating range
of the circulators (Aerotek I70-1FFF) positioned at nodes 7
and 7̄ extended from 6 to 12 GHz. Therefore, the analysis of
the data was restricted to this window.
We started by taking a series of measurements for

constant Δl. Figure 2 (top) shows the transmission for
altogether 396 Δl values stacked onto each other between
Δlmin ≈ 0 and Δlmax ¼ 4.4 cm in a gray scale. The lines for
Δφ ¼ π and Δφ ¼ 3π are marked in red and green,
respectively. Next, a variable transformation from Δl
to Δφ was performed using Eq. (11) to obtain the
transmission S12 for constant Δφ. The result is shown in
Fig. 2 (bottom).
For a given frequency ν, the maximum Δφ accessible is,

according to Eq. (11), given by Δφmax ¼ ð2πΔlmax=cÞν.
The inaccessible regime above this limit is left white in
Fig. 2 (bottom). As expected, the pattern is periodic in Δφ
with period 2π. ForΔφ ¼ π andΔφ ¼ 3π, the transmission
is strongly suppressed. This is an interference effect: All
transmission paths from P1 to P2 come in pairs, e.g., the

FIG. 2. (Top) Transmission jS12j2 in dependence of frequency
for constant Δl in a gray scale, where black corresponds to zero
and white to maximal transmission. The measurements for
different Δl are stacked onto each other. (Bottom) The same
data but rearranged to constant Δφ.
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paths 07321̄ 6̄ 5̄ 0̄ and 05612̄ 3̄ 7̄ 0̄; see Fig. 1(b). One of
these passes through one phase shifter, whereas its partner
passes through the other, and as a result, their lengths differ
by Δl. Depending on the resulting Δφ, this gives rise to
constructive or destructive interference.
Because of the lack of transmission at Δφ ¼ π, we

proceeded to analyze the reflection jS11j2. This is shown in
Fig. 3 for a small frequency window and for different Δφ,
again stacked on top of each other in a shaded plot. Each
eigenfrequency shows up as a dip. One clearly observes the
formation of Kramers doublets at the π line and their
splitting into singlets when departing from this line. There
is a complete equivalence to the Zeeman splitting of spin
doublets: In the present experiment, the antiunitary sym-
metry is destroyed when departing from the π line, whereas
for conventional spin systems, this effect occurs when
applying a magnetic field. This is a clear confirmation that
we were successful in constructing a graph with antiunitary
symmetry T with T2 ¼ −1. The distances of the six
Kramers doublets seen in Fig. 3 at the π line are equal
within 20%. This shows a clear tendency of the levels
towards an equal level spacing at the π line, one of the
fingerprints for a GSE spectrum.
To obtain the complete eigenfrequency spectrum, we

proceeded as follows: Though there are two coupled
channels, they are equivalent to one effective single channel
for Δφ ¼ π due to symmetry. In this case, the scattering
matrix reduces to a phase factor S ¼ eiφ ¼ ð1 − iKÞ=
ð1þ iKÞ, i.e., φ ¼ −2 arctanðKÞ. K may be written as a
sum over resonance poles an=ðx − xnÞ, meaning stepwise
phase changes at x ¼ xn. By taking the phase derivative,
these steps turn into sharp peaks with widths limited by
absorption (which were discarded in the argumentation).
This allowed for an automatic determination of about 90%
of the eigenvalues. With the additional information from
the spectral level dynamics (see Fig. 3), the missing ones
could be easily identified. About 10% of the Kramers
doublets split due to experimental imperfections. Whenever
this was evident from the level dynamics, the resulting two
resonances were replaced by a single one in the middle.
The integrated density of eigenfrequencies may be

written as nðνÞ ¼ nWeylðνÞ þ nflucðνÞ, where the average

part is given by Weyl’s law nWeylðνÞ ¼ ðπ=LÞð2πν=cÞ, with
L denoting the sum of all bond lengths [25]. The fluctuating
part nflucðνÞ reflects the influence of the periodic orbits
[26]. We determined nflucðνÞ by fitting a straight line to the
experimental integrated density of eigenfrequencies and
subtracting the linear part. A small number of missing
or misidentified resonances showing up in stepwise
changes of nflucðνÞ enabled the final correction of the
spectrum. From the fit, the length was obtained, e.g., L ¼
2.93 m for the graph shown in Fig. 1(c). The nearest
neighbor spacings s are calculated as the difference sn ¼
nWeylðνnþ1Þ − nWeylðνnÞ for the individual graph guaran-
teeing a mean level spacing hsi ¼ 1.
Figure 4 shows the resulting distribution of spacings

between neighboring levels in units of the mean level
spacing. To improve the statistics, the results from eight
different graphs were superimposed, leading to 1006
Kramers doublets. The red solid and the green dotted line
correspond to the Wigner prediction for the GSE

pGSEðsÞ ¼
218

36π3
s4 exp

�

−
64

9π
s2
�

ð12Þ

and the GUE

pGUEðsÞ ¼
32

π2
s2 exp

�

−
4

π
s2
�

; ð13Þ

respectively. The experimental result fits well to the GSE
distribution, and though the statistical evidence as yet is

FIG. 3. Reflection jS11j2 in dependence of frequency in a shade
plot. The results for different Δφ are stacked onto each other.

FIG. 4. Spectral nearest neighbor distance distribution obtained
by superimposing the results from eight different spectra (blue).
The dashed red and dotted green lines correspond to GSE and
GUE Wigner distributions, respectively; see Eqs. (12) and (13).
The inset shows the spectral rigidity for the same data set (blue),
again with random matrix predictions for the GSE and the GUE
in red and green, respectively.
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only moderate, it is clearly at odds with a GUE distribution.
The inset of Fig. 4 shows the associated spectral rigidity
Δ3ðLÞ [1]. Again, a good agreement with the GSE random
matrix prediction is found. The small deviations suggest
some percents of misidentified levels, which would have
only a minor influence on the nearest neighbor spacings
distribution but would distort long-range correlations.
It needed half a century after the establishment of

random matrix theory by Wigner, Dyson, Mehta, and
others to arrive at the present experimental realization of
the third of the three classical random matrix ensembles. It
might be considered surprising that two bonds between the
two subgraphs are already sufficient to turn the two GUE
spectra of the disconnected subgraphs into a GSE spectrum
for the total graph. On the other hand, the present statistical
evidence is not yet sufficient to determine whether more
connecting bonds are needed in order to reduce the minor
differences in the level spacing statistics. Further studies
are, thus, required. The dependence of the level dynamics
on Δφ offers a promising research direction due to the
interesting feature that all three classical ensembles are
present, namely, the GSE for Δφ ¼ π, the GOE for
Δφ ¼ 0, and the GUE in between. However, the most
promising future aspect is undoubtedly that the whole spin
1=2 physics [27] is now accessible to microwave analogue
studies.
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