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Resonance plays critical roles in the formation of many physical phenomena, and several methods have
been developed for the exploration of resonance. In this work, we propose a new scheme for resonance by
solving the Dirac equation in the complex momentum representation, in which the resonant states are
exposed clearly in the complex momentum plane and the resonance parameters can be determined precisely
without imposing unphysical parameters. Combined with the relativistic mean-field theory, this method is
applied to probe the resonances in 120Sn with the energies, widths, and wave functions being obtained.
Compared to other methods, this method is not only very effective for narrow resonances, but also can be
reliably applied to broad resonances.
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Resonance is the most striking phenomenon in the
whole range of scattering experiments and appears widely
in atomic, molecular, and nuclear physics [1] as well as in
chemical reactions [2]. Resonance plays a critical role in
the formation of many physical phenomena, such as halos
[3], giant halos [4,5], deformed halos [6,7], and quantum
halos [8]. The contribution of the continuum to the giant
resonance mainly comes from single-particle resonance
[9,10]. Moreover, resonance is also closely relevant to the
nucleosynthesis of chemical elements in the Universe
[11,12]. Therefore, study on the resonance is one of the
hottest topics in the different fields of physics.
Based on the conventional scattering theory, a series of

methods for resonance has been proposed, such as R-matrix
method [13,14], K-matrix method [15], S-matrix method
[1,10], Jost function approach [16,17], Green’s function
method [18,19], and so on. These methods have gained
success in handling resonant and scattering problems.
Unfortunately, solution of the scattering problem turns out
to be a very difficult task both from the formal aswell as from
the computational points of view. For this reason, several
bound-state-like methods have been developed, which
include the real stabilizationmethod (RSM) [20], the analytic
continuation in the coupling constant (ACCC) approach [21],
and the complex scaling method (CSM) [22].
The RSM, which identifies the resonant states in terms of

independence of the calculated results on model parame-
ters, is simple and able to provide rough results for the
resonance parameters. For better results, many efforts have
been made in improving the RSM calculations [23,24]. The
application of RSM to the relativistic mean-field (RMF)
theory has been developed in Ref. [25]. In the ACCC
approach, a resonant state is processed as an analytic
continuation of the bound state, which is direct and
convenient in determining the resonance parameters [21].

Presently, this approach has been combined with the RMF
theory [26,27], and some exotic phenomena in nuclei were
well explained [28,29]. The CSM is one of the most
frequently used methods for exploration of the resonance
in atomic and molecular physics [22] as well as in nuclear
physics [30–34]. Recently, we have applied the CSM to the
relativistic framework [35] and obtained satisfactory
descriptions of the single-particle resonances in spherical
nuclei [36–38] and deformed nuclei [39].
Although these bound-state-like methods are efficient in

handling the unbound problems, there still exist some
shortcomings. The RSM is simple but not precise enough
for determining the resonance parameters, and it is often
used as a first step for other methods. There exists a certain
dependence of the calculated results on the range of
analytical continuation and the order of polynomial in
Padé approximation in the ACCC calculations. The CSM
calculations are quite accurate, but they are not completely
independent on the rotation angle in the actual calculations
with a finite basis. Hence, it is necessary to explore new
schemes without introducing any unphysical parameters,
but are able to obtain accurately the concerned results.
From the scattering theory, it is known that the bound

states populate on the imaginary axis in the momentum
plane, while the resonances locate at the fourth quadrant. If
we devise a scheme to solve directly the equation of motion
in the complex momentum space, we can obtain not only
the bound states but also the resonant states. There have
been some investigations on how to obtain the bound states
[40,41] and the resonant states [42–44] using momentum
representation in a nonrelativistic case, and used later as
“Berggren representation” in shell model calculations
[45,46]. However, probing the resonance of Dirac particle
by the application of complex momentum representation is
still missing. As the resonance of a Dirac particle is widely
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concerned in many fields [47–50] and almost all the
methods have been developed for description of the
relativistic resonance [19,25,27,35,51–53], in this Letter,
we will establish a new scheme for the resonance of a Dirac
particle using the complex momentum representation,
which can be implemented straightforwardly to the relevant
studies in other fields. In the following, we first introduce
the theoretical formalism.
Considering that the RMF theory is very successful in

describing nuclear phenomena [54–60] and astrophysics
phenomena [61–66], without loss of generality, we explore
the resonance of a Dirac particle based on the RMF
framework, where the Dirac equation describing nucleons
can be written as

½~α · ~pþ βðM þ SÞ þ V�ψ ¼ εψ ; ð1Þ

whereM represents the nucleon mass, ~α and β are the Dirac
matrices, S and V are the scalar and vector potentials,
respectively. The details of the RMF theory can refer to the
literature Refs. [54–57]. The solutions of Eq. (1) include the
bound states, the resonant states, and the nonresonant
continuum. The bound states can be obtained with conven-
tional methods. For the resonant states, several techniques
have been developed, but there exist some shortcomings in
these methods. Here, we will establish a new scheme for the
resonances by solving the Dirac equation using complex
momentum representation.
The wave function of a free particle with momentum

~p or wave vector ~k ¼ ~p=ℏ is denoted as j~ki. In the
momentum representation, the Dirac equation (1) can be
expressed as

Z
d~k0h~kjHj~k0iψð~k0Þ ¼ εψð~kÞ; ð2Þ

where H ¼ ~α · ~p þ βðM þ SÞ þ V is the Dirac

Hamiltonian, and ψð~kÞ is the momentum wave function.

For a spherical system, ψð~kÞ can be split into the radial and
angular parts as

ψð~kÞ ¼
� fðkÞϕljmj

ðΩkÞ
gðkÞϕ~ljmj

ðΩkÞ
�
; ð3Þ

where ϕljmj
ðΩkÞ is a two-dimensional spinor ϕljmj

ðΩkÞ ¼
½χ1=2ðsÞ ⊗ YlðΩkÞ�jmj

. Quantum number l (~l) is the orbital

angular momentum corresponding to the large (small)
component of Dirac spinor. The relationship between l
and ~l is related to the total angular momentum quantum
number j with ~l ¼ 2j − l.
Putting the wave function (3) into Eq. (2), the Dirac

equation is reduced to the following form:

MfðkÞ − kgðkÞ þ
Z

k02dk0Vþðk; k0Þfðk0Þ

¼ εfðkÞ;−kfðkÞ −MgðkÞ

þ
Z

k02dk0V−ðk; k0Þgðk0Þ ¼ εgðkÞ; ð4Þ

with

Vþðk; k0Þ ¼ 2

π

Z
r2dr½VðrÞ þ SðrÞ�jlðk0rÞjlðkrÞ; ð5Þ

V−ðk; k0Þ ¼ 2

π

Z
r2dr½VðrÞ − SðrÞ�j~lðk0rÞj~lðkrÞ; ð6Þ

where fðkÞ and gðkÞ are the radial parts of Dirac spinor,
and jlðkrÞ½j~lðkrÞ� are the spherical Bessel functions of

order l½~l�. By turning the integral in Eq. (4) into a sum over
a finite set of points kj and dk with a set of weights wj, it is
then transformed into a matrix equation

XN
j¼1

�
Aþ
ij Bij

Bij A−
ij

��
fðkjÞ
gðkjÞ

�
¼ ε

�
fðkiÞ
gðkiÞ

�
; ð7Þ

where A�
ij ¼ �Mδij þ wjk2jV

�ðki; kjÞ and Bij ¼ −kiδij.
In Eq. (7), the Hamiltonian matrix is not symmetric.
For simplicity in computation, we symmetrize it by the
transformation,

fðkiÞ ¼ ffiffiffiffiffi
wi

p
kifðkiÞ; gðkiÞ ¼ ffiffiffiffiffi

wi
p

kigðkiÞ; ð8Þ

which gives us a symmetric matrix in the momentum
representation as

H ¼
�
Aþ B

B A−

�
; ð9Þ

where A�
ij ¼ �Mδij þ ffiffiffiffiffiffiffiffiffiffiwiwj

p kikjV�ðki; kjÞ and Bij is the
same as Bij. So far, to solve the Dirac equation (1) becomes
an eigensolution problem of the symmetric matrix (9).
To calculate the symmetric matrix, several key points need
to be clarified. As the integration in Eq. (4) is from zero to
infinity, it is necessary to truncate the integration to a large
enough momentum kmax. When kmax is fixed, the integra-
tion can be calculated by a sum shown in Eq. (7). As a sum
with evenly spaced dk and a constant weight wj converges
slowly, it should not be used. We replace the sum by the
Gauss-Legendre quadrature with a finite grid number N,
which gives us a 2N × 2N Dirac Hamiltonian matrix (9).
In the realistic calculations, we need to choose a proper
contour for the momentum integration. From the scattering
theory, we know that the bound states populate on the
imaginary axis in the momentum plane, while the reso-
nances locate at the fourth quadrant. The contour shown in
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Fig. 1(a) encloses only the bound states. For the resonant
states, the contour needs to be deformed into a complex one
illustrated in Fig. 1(b) denoted as Lþ. Using the complex
contour Lþ, one can obtain not only the bound states but
also resonant states in the continuum. As long as the range
of contour is large enough, we are able to get all the
concerned resonances. For convenience, we claim this
method for exploring the resonances using the complex
momentum representation in the framework of RMF theory
as the RMF-CMR method.
Using the formalism presented above, we explore the

resonances in real nuclei. By taking the nucleus 120Sn as an
example, we first perform the RMF calculation with the
scalar and vector potentials being obtained. For the
resonant states, the momentum representation is adopted.
The Dirac equation is solved by diagonalizing the matrix
(9) in the momentum space along a triangle contour, and
the tip of the triangle is placed below the expected position
of the resonance pole. The contour is truncated to a finite
momentum kmax ¼ 3.5 fm−1, which is sufficient for all the
concerned resonances. The grid number of the Gauss-
Legendre quadrature N ¼ 120 is used for the momentum
integration along the contour, which is enough to ensure the
convergence with respect to number of discretization
points. In the practical calculations, the grid number N
is divided into n, n, and 2n used in each segment of the
contour, respectively. For the state h9=2, we confine the
triangle contour with the four points k ¼ 0 fm−1,
k ¼ 0.11 − i0.008 fm−1, k ¼ 0.22 fm−1, and kmax ¼
3.5 fm−1 in the complex k plane. The calculated results
are displayed in Fig. 2, where we can see that most
solutions follow the contour, corresponding to the non-
resonant continuum states. There is one solution that does
not lie on the contour, corresponding to the 1h9=2 reso-
nance, which is separated completely from the continuum
and exposed clearly in the complex momentum plane.
Although the resonances can be exposed in the complex

k plane, we would like to further check whether the present
calculations depend on the choice of contour. In Fig. 3, we
show the single-particle spectra for the state f5=2 in four
different contours. In each panel, one can see a resonant
state exposed clearly in the complex k plane. In comparison
with panel (a), the contour in panel (b) is deeper, and the

corresponding continuous spectra drop down with the
contour, while the position of the resonant state 2f5=2 does
not change. Similarly, when the contour moves from left to
right or from right to left, as shown in panels (c) and (d), the
continuum follows the contour, while the resonant state
2f5=2 keeps at its original position. These indicate that the
physical resonant states obtained by the present method are
indeed independent on the contour.
As the resonant states are independent on the contour,

we can choose a large enough contour to expose all
the concerned resonances. Using the one with
k ¼ 0 fm−1, k ¼ 0.75 − i0.28 fm−1, k ¼ 1.5 fm−1, and
kmax ¼ 3.5 fm−1, the calculated single-neutron spectra in
120Sn are shown in Fig. 4, where the bound states are
exposed on the imaginary axis, the resonant states are

(a) (b)

FIG. 1. The complex momentum plane. The black open squares
represent the bound states and the red filled diamonds resonant
states with the mirroring of the states in the imaginary axis.

FIG. 2. Single-particle spectra for the state h9=2 in the complex
k plane in the RMF-CMR calculations with the effective
interaction NL3 [67]. The red filled diamond, black open circles,
and olive solid line represent the 1h9=2 resonant state, the
continuum, and the contour of integration in the complex
momentum plane, respectively.

(a) (b)

(c) (d)

FIG. 3. Same as Fig. 2, but for the state 2f5=2 in four different
contours for the momentum integration. The red filled diamond in
each panel represents the 2f5=2 resonant state.
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isolated from the continuum in the fourth quadrant, and the
continuum follows the integration contour. Here, we have
observed nine resonant states 1h9=2, 2f5=2, 1i13=2, 1i11=2,
1j15=2, 1j13=2, 2g9=2, 2g7=2, and 2h11=2. For the resonant
states 1h9=2, 1i13=2, and 2f5=2, their positions are close to
the real k axis, corresponding to the narrow resonances with
smaller widths. For the resonant states 2g9=2, 2g7=2, and
2h11=2, they are far away from the real k axis, correspond-
ing to the broad resonances. Note that these broad reso-
nances have not been obtained in the RMF-CSM
calculations [35] because it requires a large complex
rotation, which leads to the divergence of complex rotation
potential. Similarly, there are also some troubles for
exploring these broad resonances in other methods. The
present RMF-CMR method provides a powerful and
efficient pathway to explore the broad resonances as long
as the momentum contour covers the range of resonance.
When the resonant states are exposed in the complex k

plane, we can read the real and imaginary parts of their

wave vectors. We can then extract the resonance parameters
like energy and width by the formula Er þ iEi ¼
Er − iΓ=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
−M. In order to obtain precise

results for the resonance parameters, it is necessary to check
the convergence of the calculated results on the grid number
in the Gauss-Legendre quadrature. The resonance parame-
ters for four resonant states varying with the grid number are
listed in Table I, where three significant digits are reserved in
the decimal part. From Table I, we can see that the calculated
results are unchanged when N ≥ 80 in the present precision
with the 1h9=2 exception. For the state 1h9=2, the tiny
difference among the widths should be attributed to the fact
that its width is too small in comparison with the corre-
sponding energy. These imply that we have obtained the
convergent results in the present calculations [68].
The above discussions indicate that the present method is

applicable and efficient for exploring the resonance. For
comparison, the calculated results from other different
bound-state-like methods, RMF-CSM [35], RMF-RSM
[25], and RMF-ACCC [27], are listed in Table II for
several narrow single-neutron resonant states in 120Sn.
From Table II, we can see that, in the RMF-CMR
calculations with NL3, the energies and widths for all of
the available resonant states are comparable to those
obtained by the other methods. The same conclusion can
also be obtained in the RMF-CMR calculations with the
effective interaction PK1 [69], which have not been
shown here.
Although agreeable results are obtained, it is worthwhile

to remark the difference in these four different calculations.
In the RMF-ACCC calculations, the resonant states are
obtained by extending a bound state to a resonant state,
which is effective for the narrow resonances [27–29], but
for the broad resonances, the results from the ACCC
calculations are less precise. Compared with the RMF-
ACCC, the RMF-RSM method is much simpler. The
resonant states can be determined in terms of the inde-
pendence of the calculated results on the model parameters.
As shown in Fig. 1 in Ref. [25], there appears the plateau
for the resonant states in the energy surface. For the narrow
resonance 1i13=2, the plateau is clear, which implies that it is
easy to determine the narrow resonances by the RMF-RSM
method. Although the CSM is efficient for not only narrow
resonances but also broad resonances, there is the singu-
larity in the nuclear potential with a large complex rotation,
which leads to the fact that the RMF-CSM is inapplicable
for some broad resonances. Therefore, these four methods
are all effective for the narrow resonances, while only the
RMF-CMR method is applicable and more reliable for the
broad resonances.
Besides the spectra, we have also obtained the wave

function of a Dirac particle in the momentum space. The
radial-momentum probability distributions (RMPD) for the
single-particle states h9=2 are drawn in Fig. 5. The RMPD
corresponding to the resonance 1h9=2 is expanded much

FIG. 4. Single-neutron spectra in 120Sn in the RMF-CMR
calculations with the interaction NL3. The blue open squares,
red filled diamonds, and black open circles represent the bound
states, the resonant states, and the continuum, respectively. The
olive solid line denotes the contour of integration in the complex
momentum plane.

TABLE I. The calculated energies for the single neutron
resonant states in 120Sn varying with the grid number of the
Gauss-Legendre quadrature in the momentum integration. All
energies are in units of MeV.

1h9=2 2f5=2 1i13=2 2g9=2
N Er,Ei Er,Ei Er,Ei Er,Ei

60 0.239;−2.81 × 10−8 0.678;−0.0157 3.267;−0.00186 5.232;−1.534
80 0.239;−2.77 × 10−8 0.678;−0.0156 3.267;−0.00186 5.232;−1.534
100 0.239;−2.76 × 10−8 0.678;−0.0156 3.267;−0.00186 5.232;−1.534
120 0.239;−2.76 × 10−8 0.678;−0.0156 3.267;−0.00186 5.232;−1.534
140 0.239;−2.76 × 10−8 0.678;−0.0156 3.267;−0.00186 5.232;−1.534
160 0.239;−2.76 × 10−8 0.678;−0.0156 3.267;−0.00186 5.232;−1.534

PRL 117, 062502 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

5 AUGUST 2016

062502-4



wider than the surrounding states. The Heisenberg uncer-
tainty principle tells us that a less well-defined momentum
corresponds to a more well-defined position. Consequently,
this state should correspond to a localized wave function,
i.e., a wave function of a resonant state. Compared with the
1h9=2, the RMPD for the other states display sharp peaks at
different values of k, which corresponds to free particles.
These indicate that we can also judge the resonance by the
wave function in the momentum representation.
In summary, we have proposed a new scheme to explore

the resonances in the RMF framework, where the Dirac
equation is solved directly in the complex momentum
representation, and the bound and resonant states are dealt
with on an equal footing. We have presented the theoretical
formalism and elaborated the numerical details. As an
illustrating example, we have explored the resonances in
the nucleus 120Sn and determined the corresponding
resonance parameters. In comparison with several fre-
quently used bound-state-like methods, the agreeable
results are obtained. In particular, the present method
can expose clearly the resonant states in the complex
momentum plane and determine precisely the resonance
parameters without imposing unphysical parameters. Also
highly remarkable is the present method that is applicable

for not only narrow resonances but also broad resonances
that before were difficult to obtain.
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