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It may soon be possible for Advanced LIGO to detect hundreds of binary black hole mergers per year.
We show how the accumulation of many such measurements will allow for the detection of gravitational-
wave memory: a permanent displacement of spacetime that comes from strong-field, general relativistic
effects. We estimate that Advanced LIGO operating at design sensitivity may be able to make a signal-to-
noise ratio 3 (5) detection of memory with ∼35 ð90Þ events with masses and distance similar to GW150914.
We highlight the importance of incorporating higher-order gravitational-wave modes for parameter
estimation of binary black hole mergers, and describe how our methods can also be used to detect higher-
order modes themselves before Advanced LIGO reaches design sensitivity.
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The landmark detection of gravitational waves (GWs)
indicates binary black hole mergers will soon be observed
regularly with Advanced LIGO (aLIGO) [1]. This opens
the door to new areas of study not possible with light given
the electromagnetically quiet nature of black hole mergers.
We turn our attention to Christodoulou GW memory [2–7],
a purely strong-field gravitational effect. We show memory
can be probed in the near future using an ensemble of
observations of binary black hole systems.
Memory induces a monotonically increasing GW strain,

a permanent change in the relative distance between two
freely falling test masses [2,3]. Pulsar timing arrays
regularly search for memory [8–12]. However, the memory
component is a small fraction of the total strain for a
merger, making it improbable that aLIGO will detect
memory from an individual coalescence signal [6]. The
optimal, matched filter memory signal-to-noise ratio for
an event like GW150914 with two aLIGO detectors at
design sensitivity averaged over astrophysical parameters is
S=N ¼ 0.42. Although, this is too small to be detected, it is
non-negligible. However, an ensemble of events can be
used to detect memory. Moreover, GW150914 implies
mergers are relatively abundant in the Universe, and,
therefore, GW observations are likely to become common-
place in the near future [13].
The production of memory waveforms from numerical

relativity simulations is in its infancy [14]. Analytic wave-
forms that use a variety of approximations match numerical
simulations qualitatively. Both techniques yield a step-
function-like waveform with comparable rise time and
amplitude [6,14,15]. We use the minimal-waveform model
[16]. This phenomenological model has been matched to
calculations using both the effective-one-body approach
[16] and with pure numerical relativity simulations [14].
We use this model because it is simple, and provides

qualitative agreement with waveforms derived by other
means.
For nonspinning, quasicircular binaries, the memory

waveform is linearly polarized, and is described by the
following parameters: masses (m1, m2), distance to the
source d, inclination angle θ, and polarization angle ψ .
The assumption of no spin is consistent with GW150914
[1,17], although the formalism can be straightforwardly
extended. However, for strong precession where the orbital
plane precesses, the memory is not linearly polarized,
complicating the analysis. Memory waveforms for equal-
mass binaries with aligned spins can be found in Ref. [14].
The detection of the coalesence’s oscillatory component

favors face-on binaries, where the binary’s orbital angular
momentum vector is aligned with the observer’s line of
sight, θ ¼ 0. However, the memory component of the strain
scales as hðmemÞ ∝ sin2 θð17þ cos2 θÞ [16], implying face-
on binaries have zero memory, and edge-on binaries have
maximal memory. Our prescription for detecting memory
requires each binary to be detected through its oscillatory
component. Parameter estimation for GW150914 yields
θ ≈ 140°, but is consistent with being a face-on–off system
[17]. Comparing the memory amplitude for θ ¼ 140° and
θ ¼ 90°, we find that the signal from a θ ¼ 140° binary is
43% the maximum possible. The angle θ does not affect the
memory in any way other than its amplitude.
The polarization modulates the amplitude of the memory

signal and the sign. Our strategy for detecting memory
relies on the coherent summation of an ensemble of
subthreshold signals. We require knowledge of the sign
of the memory for individual detections, otherwise the
memory adds incoherently and cancels (Strictly speaking, it
is still possible to measure a signal from an incoherent
sum, but this grows much slower.). However, it turns out
that the sign of the memory cannot be determined using the
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hlm ¼ h22 mode of the oscillatory signal that is normally
used in parameter estimation [17,18]. Fortunately, the sign
can be determined using higher-order modes.
Using the h22 mode, the oscillatory waveform is

invariant under a simultaneous rotation of the polarization
angle, ψ → ψ þ π=2, and a shift in the phase at coales-
cence, ϕc → ϕc þ π=2. That is h22ðψ ;ϕcÞ ¼ h22ðψ þ π=2;
ϕc þ π=2Þ. However, memory acquires a minus sign under
the same transformation: hmemðψ ;ϕcÞ ¼ −hmemðψ þ π=2;
ϕc þ π=2Þ. This degeneracy between ψ and ϕc implies we
cannot know the sign of the memory using only the h22
component.
Higher-order hlm’s can be used to break the degeneracy

between ψ and ψ þ π=2; see Fig. 1. We calculate wave-
forms using surrogate models [19] that include all modes
up to l ¼ 3 [20]. We define

Δhlm ≡ ½hlmðψ ;ϕcÞ − hlmðψ þ π=2;ϕc þ π=2Þ�−2Ylm;

ð1Þ
where −2Ylm are the spin-weighted spherical harmonics.
One can think of Δhlm as a degeneracy-breaking param-
eter; a measurable ΔhlmðtÞ breaks the degeneracy between
ψ and ψ þ π=2, and determines the sign of the memory. In
principle, uncertainty in parameters such as component
masses and inclination angle reduces our ability to measure
Δhlm. Using a Monte Carlo simulation, we estimate only
an ≈2% systematic error in Δhlm on average, suggesting
this is a small effect.
The red trace in Fig. 1 shows Δh22 ¼ 0, because the

l ¼ m ¼ 2 mode does not break the degeneracy. The blue
curve shows

P
l

P
mΔhlm for l ¼ 2, 3 and all corre-

sponding jmj > 0. The ψ degeneracy is broken and the sign
of the memory determined when Δhl¼ð2;3Þm (blue curve) is
detectable with matched filtering.

In Fig. 2, we plot the strain time series for a binary with
parameters equivalent to the maximum-likelihood esti-
mates for GW150914: m1 ¼ 36M⊙, m2 ¼ 29M⊙,
d ¼ 410 Mpc, and θ ¼ 140° [1,17]. The top panel shows
the full signal with and without memory (blue and black
curves, respectively). The bottom panel shows only the
memory component. The memory component is calculated
using Eq. (9) from Ref. [16] and the method described
therein. The red dotted and dashed curves are binaries at the
same distance, and with the same orientation, but with
different masses: m1;2 ¼ 20M⊙ (dotted curve) and 50M⊙
(dashed curve).
LIGO is not sensitive to strain below ≈10 Hz. The solid

blue curve in the inset to Fig. 2 shows an enlarged version
of the GW strain corresponding to the blue curve in the
bottom panel, while the dashed curve shows the signal after
applying a high-pass filter with a 10 Hz cutoff.
The memory amplitude scales linearly with the black-

hole masses. The mass also changes the memory rise time,
and hence its spectral shape, but only at frequencies greater
than 1 over the rise time. LIGO is more sensitive to higher
mass binaries providing the characteristic rise time of the
memory signal is smaller than 1=f0, where f0 is the
detector’s low-frequency seismic cutoff.
We calculate a matched-filter signal-to-noise ratio, S=N.

For a strain time series hðtÞ the S=N is

S=N ¼ hh; ui=
ffiffiffiffiffiffiffiffiffiffiffiffi
hu; ui

p
; ð2Þ

where uðtÞ is the template, and

FIG. 1. Gravitational-wave time series of the higher-order
modes for an edge-on binary with parameters consistent with
GW150914 [1,17], where the vertical axis Δhlm is defined in
Eq. (1). The red curve shows the Δh22 mode, which is identically
zero, implying the GW polarization angle ψ and phase at
coalescence ϕc are degenerate variables. The blue trace showsP

l

P
m Δhlm for l ¼ 2, 3 and all corresponding values of

jmj > 0. The fact that Δhlm ≠ 0 implies that higher-order modes
can be used to break the ψ degeneracy and thus determine the
sign of the memory.
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FIG. 2. Gravitational-wave strain time series using parameters
consistent with GW150914 [1,17]. The top panel shows the strain
time series with GW memory (blue curve) and without (black).
The bottom panel shows only the memory-induced strain series,
where the blue curve uses the maximum likelihood parameters for
GW150914 [1,17]. The red dotted and dashed curves are binaries
at the same distance (410 Mpc) and with the same orientation
(θ ¼ 140°), but equal mass binaries with m1;2 ¼ 20M⊙ and
50M⊙, respectively (cf. 65M⊙ for the blue curve). Inset: the
solid blue curve shows an enlarged version of the blue curve from
the bottom panel, while the dashed curve is after a high-pass filter
to show the signal visible in aLIGO.
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ha; bi≡ 4Re
Z

∞

0

~aðfÞ ~b⋆ðfÞ
ShðfÞ

df; ð3Þ

where ShðfÞ is the noise power spectral density.
This S=N calculation assumes the oscillatory compo-

nent of the coalescence has been successfully removed
from the hðtÞ and that our knowledge of the memory
waveform is complete. We test how this latter assumption
affects our ability to measure S=N. We create memory
signals with maximum-likelihood parameters of
GW150914, and calculate the S=N expectation value
recovered using mismatched templates with m1;2 ¼ 46,
39M⊙ and m1;2 ¼ 26, 19M⊙ (note these errors are much
larger than the 90% C.L. intervals of GW150914). We
find at worst, the S=N expectation value decreases
by ≈21%.
There are good reasons to suppose that the imperfect

subtraction of the oscillatory component of the signal
does not significantly affect our results. First, the memory
signal is loudest during the merger phase. It is dominated
by the lowest frequency component in the observing
band. During the merger, the oscillatory component is
about an order of magnitude higher in frequency,
suggesting that the residuals from imperfect subtraction
will not contribute significantly to the memory signal.
Second, as we discuss below, the memory strain adds
coherently whereas residual strain from imperfect sub-
traction adds incoherently. Therefore, we do not expect
uncertainty associated with the binary parameters to
significantly affect our results.
For multiple events, we construct an optimal estimator

for the weighted-memory sum

ĥtot ¼
�XN

i¼1

XNIFO

j¼1

ĥi;j
σ2i;j

�
=

�XN
i¼1

XNIFO

j¼1

σ−2i;j

�
; ð4Þ

σtot ¼
�XN

i¼1

XNIFO

j¼1

σ−2i;j

�−1=2

; ð5Þ

where ĥi;j is the estimator for the memory amplitude of the
ith event detected in the jth interferometer, σi;j is the
associated uncertainty, and σtot is the uncertainty associated
with ĥtot. The variable σi;j depends on sky location and
polarization angle. Combining Eqs. (4) and (5) gives an
expression for the optimal, total S=N

dS=Ntot ¼
�XN

i¼1

XNIFO

j¼1

dS=Ni;j

σi;j

�
=

�XN
i¼1

XNIFO

j¼1

σ−2i;j

�1=2

; ð6Þ

where dS=Ni;j ¼ ĥi;j=σi;j.
The total expectation value for the total S=N forN events

observed with NIFO interferometers is

hS=Ntoti ¼
�XN

i¼1

XNIFO

j¼1

hS=Ni;ji2
�1=2

: ð7Þ

In the limit where the signals from all mergers have the
same hS=Nii, hS=Ntoti ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffi
NNIFO

p
. For this analysis we

assume a network consisting of LIGO Hanford and
Livingston interferometers, NIFO ¼ 2.
This frequentist approach allows us to estimate the total

number of detected merger events required to detect
memory. We also develop a complementary method for
determining the Bayesian evidence for a memory signal.
Consider a single coalescence detected by aLIGO. The
Bayesian evidence, Z ¼ R

Lðhj~ξÞpð~ξÞd~ξ, where ~ξ are the

model parameters, Lðhj~ξÞ is the likelihood of the data hðtÞ
given the model, and pð~ξÞ is the prior probability for each
of the parameters. The log likelihood is

lnLðhj~ξÞ ∝ −
1

2

XM
k¼1

j ~hk − ~uk=dj2
σðfkÞ2

; ð8Þ

where we sum over frequency bins fk, and σðfkÞ is the

interferometer noise spectrum. The variable ~ukð~ξÞ is the
template describing the full merger signal, including both
the oscillatory and memory components. The Bayes factor
BF ¼ Z=Z0 is the evidence ratio where the denominator is

the null hypothesis Z0 ¼
R
L0ðhj~ξÞpð~ξÞdξ. The likelihood

L0 is the same as L in Eq. (8), except we use a different
template ~u0k that includes the oscillatory component, but no
memory. The Bayes factor compares the memory hypoth-
esis to the no-memory hypothesis.
For multiple events the evidence is

Ztot ¼
YN
i¼1

YNIFO

j¼1

Zi;j: ð9Þ

The total Bayes factor for N events observed in NIFO
interferometers is BF ¼ Ztot=Z0;tot.
Having introduced two statistical formalisms, we apply

both to Monte Carlo simulations. For simplicity, we work
with memory-only waveforms, assuming the oscillatory
part has been perfectly subtracted. In order to test the
validity of this assumption, we derive a “cleaned” memory
template by projecting out spectral content covariant with
the other astrophysical parameters. For loud signals, the
cleaned template is insensitive to residual errors from
imperfect subtraction. By projecting out part of the memory
waveform, we throw out a small amount of signal.
However, we estimate the loss of S=N to be small:
only ∼0.1%.
For the sake of pedagogy, we begin with a simulation of

an ensemble of binaries with fixed distance, d ¼ 410 Mpc
and fixed component masses (m1 ¼ 36M⊙, m2 ¼ 29M⊙),
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but random values of inclination, polarization, and sky
position.
For each binary we calculate three (expectation values

of) signal-to-noise ratios. First, we calculate the oscillatory
signal-to-noise ratio, hS=Ncbci. Second, we calculate the
ψ-degeneracy-breaking signal-to-noise ratio, hS=NΔhi [see
Eq. (1)]. We include l ≤ 3 modes that are key to resolving
ψ . Measurement of hS=NΔhi > 0 is, in and of itself,
interesting as it is evidence of higher-order modes. We
calculate that a single detection of a GW150914-like event
at design sensitivity will produce an hS=NΔhi≳ 5 detec-
tion, suggesting this effect can be detected well before
design sensitivity; see also Refs. [21–23]. Third, we
calculate the memory signal-to-noise ratio hS=Ni. We only
retain confident oscillatory detections, hS=Ncbci ≥ 12 [24].
The cumulative hS=Ntoti is shown in Fig. 3. In the top

panel, the solid curves represent the expectation value while
the shaded region is the one-sigma uncertainty. The blue
curve sums the memory contributions from all binaries.
This is unrealistic as it includes binaries where we cannot

measure the polarization, and therefore do not know the
memory sign. The red curve adds the memory contribution
only from binaries where we are confident the memory sign
is correct. That is, we only add the memory contribution for
signals with hS=NΔhi > 2, implying we are ≳95% con-
fident that ψ is accurately measured, and the sign of the
memory is correct. We have verified through simulations
that we recover the correct sign of the memory 95% of the
time for signals with hS=NΔhi ¼ 2. In particular, we
perform a Monte Carlo study with GW150914-like binary
mergers at a distance such that hS=NΔhi ¼ 2 with aLIGO
sensitivity. We compute the maximum likelihood using
templates with the correct sign of the memory, and with the
opposite sign, finding that the larger likelihood gives the
correct sign of the memory for 95% of binaries. For all
simulations in this Letter, any binary that has hS=NΔhi<2
are added with memory hS=Ni ¼ 0.
The bottom panel of Fig. 3 shows 20 Monte Carlo

realizations, highlighting the stochasticity of hS=Ntoti
growth, and the contribution of the second cut. We high-
light one realization in red, and show with blue crosses
binaries with hS=NΔhi < 2, and, therefore, have zero
memory contribution.
Figure 3 shows that one can expect an hS=Ntoti ¼ 3 ð5Þ

detection of memory after ∼35 ð90Þ GW150914-like detec-
tions with aLIGO at design sensitivity, although this could
happen with as few as ∼20ð75Þ.
In Fig. 4 we plot the cumulative Bayes factor of the

memory signal as a function of the number of events. As
with Fig. 3, we plot in blue the cumulative memory signal

FIG. 3. Evolution of the cumulative signal-to-noise hS=Ntoti as
a function of the number of binary black hole mergers. All
binaries have the same distance and mass as the maximum
likelihood parameters of GW150914, but have random distribu-
tions of inclination, polarization, and sky position. In the top
panel, the solid curves represent the expectation value and the
shaded region is the one-sigma uncertainties. The blue curve
sums the memory signal-to-noise contribution from all binaries,
and the red curve assigns memory hS=Ni ¼ 0 for those binaries
where the polarization angle, and hence the sign of the memory
cannot be determined. The bottom panel shows 20 individual
realizations of the red curve in the top panel. One particular
realization is highlighted in red; the binaries assigned hS=Ni ¼ 0
are shown with blue crosses. In both panels, the horizontal dashed
and solid lines show hS=N toti ¼ 3 and 5, respectively.

FIG. 4. Evolution of the cumulative Bayes factor as a function
of the number of binary black hole mergers. All binaries have the
same distance and mass as the maximum likelihood parameters of
GW150914, but have random distributions of inclination, polari-
zation, and sky position. The thick, solid curves represent the
expectation value and the shaded region is the one-sigma
uncertainties. The blue curve sums the memory signal-to-noise
contribution from all binaries, and the red curve assigns a
Bayesian evidence of unity for those binaries where the polari-
zation angle, and, hence, the sign of the memory cannot be
determined. We also show in gray 10 individual realizations from
the red curve.
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from all the binaries, and in red we only add the memory
contribution from signals where we are confident that the
sign of the memory signal is correct. Again, the thick
curves show the mean value and the shaded region is the
one-sigma uncertainties. As before, we highlight the
stochastic nature of the growth of this signal by showing
10 individual realizations. The results of Fig. 4 are
consistent with that of Fig. 3: one is likely to be confident
of a detection of memory after ∼35 events when
ðln BFÞtot ≳ 8.
Repeating the simulations presented in Figs. 3 and 4, but

assuming that events are distributed uniformly in volume,
we find that the time to detection changes by less than a few
percent. This is because the growth of hS=Nitot is domi-
nated by a relatively small number of loud events.
Given there is only a single GW observation to date, we

do not know the mass distribution of binary black holes
throughout the Universe. The memory component of the
GW strain scales proportionally to the mass of the binary; if
GW150914 was a relatively high-mass binary compared to
the population, then the number of events required to detect
memory increases. However, there are some theoretical
suggestions, e.g., Ref. [25] that GW150914 may be at the
lower end of the mass distribution, implying GW memory
could be detected sooner.
We provide a proof-of-principle that LIGO and the global

network of ground-based GW interferometers will be able to
detect GW memory with dozens of nearby events. The
addition of more GW detectors such as Virgo, KAGRA, or
LIGO-India will further reduce the time to detection.
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Note added in proof.—Recently, the LIGO Scientific
Collaboration announced the detection of a second binary
black hole merger, GW151226, with lower mass than

GW150914 [26]. Understanding the underlying mass
distribution of binary black hole systems throughout the
Universe will give further insight into the ``time to
detection’’ of gravitational-wave memory.
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