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“Is entanglement monogamous?” asks the title of a popular article [B. Terhal, IBM J. Res. Dev. 48, 71
(2004)], celebrating C. H. Bennett’s legacy on quantum information theory. While the answer is affirmative
in the qualitative sense, the situation is less clear if monogamy is intended as a quantitative limitation on
the distribution of bipartite entanglement in a multipartite system, given some particular measure of
entanglement. Here, we formalize what it takes for a bipartite measure of entanglement to obey a general
quantitative monogamy relation on all quantum states. We then prove that an important class of
entanglement measures fail to be monogamous in this general sense of the term, with monogamy
violations becoming generic with increasing dimension. In particular, we show that every additive and
suitably normalized entanglement measure cannot satisfy any nontrivial general monogamy relation while
at the same time faithfully capturing the geometric entanglement structure of the fully antisymmetric state
in arbitrary dimension. Nevertheless, monogamy of such entanglement measures can be recovered if one
allows for dimension-dependent relations, as we show explicitly with relevant examples.
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Introduction.—Entanglement is a quintessential mani-
festation of quantum mechanics [1,2]. The study of
entanglement and its distribution reveals fundamental
insights into the nature of quantum correlations [3], on
the properties of many-body systems [4,5], and on pos-
sibilities and limitations for quantum-enhanced technolo-
gies [6]. A particularly interesting feature of entanglement
is known as monogamy [7], that is, the impossibility of
sharing entanglement unconditionally across many sub-
systems of a composite quantum system.
In the clearest manifestation of monogamy, if two parties

A and B with the same (finite) Hilbert space dimension are
maximally entangled, then their state is a pure state jΦiAB
[8], and neither of them can share any correlation—let
alone entanglement—with a third party C, as the only
physically allowed pure states of the tripartite system ABC
are product states jΦiAB ⊗ jΨiC. Consider now the more
realistic case of A and B being in a mixed, partially
entangled state ρAB. It is then conceivable for more parties
to get a share of such entanglement. Namely, a state ρAB
on a Hilbert space HA ⊗ HB is termed “n-shareable”
with respect to subsystem B if it admits a symmetric
n-extension, i.e., a state ρ0AB1;…;Bn

on HA ⊗ H⊗n
B invariant

under permutations of the subsystems B1;…; Bn and such
that the marginal state of A and any Bj amounts to ρAB.
While even an entangled state can be shareable up to some
number of extensions, a seminal result is that a state ρAB is
n-shareable for all n ≥ 2 if and only if it is separable, that
is, no entangled state can be infinitely shareable [7,9–12].
This statement formalizes exactly the monogamy of

entanglement (in an asymptotic setting), and has many
important implications, including the equivalence between
asymptotic quantum cloning and state estimation [13,14],
the emergence of objectivity in the quantum-to-classical
transition [15], the security of quantum key distribution
[16–19], and the study of frustration and topological phases
in many-body systems [20–24].
Over the last two decades, the goal to formalize

monogamy of entanglement in precise quantitative terms
and for a finite number of parties has attracted increasing
interest. The concept of monogamy became synonymous
with the validity of an inequality due to Coffman, Kundu,
and Wootters (CKW) [25]. Given any tripartite state ρABC,
and choosing a bipartite entanglement measure E, the
CKW inequality reads [26]

EA∶BCðρABCÞ ≥ EA∶BðρABÞ þ EA∶CðρACÞ; ð1Þ
with ρAB ¼ TrC½ρABC� and ρAC ¼ TrB½ρABC�. Intuitively,
Eq. (1) means that the sum of the individual pairwise
entanglements between A and each of the other parties B
or C cannot exceed the entanglement between A and
the remaining parties grouped together. Equation (1)
was originally proven for arbitrary states of three qubits,
adopting the squared concurrence as entanglement measure
[25]. Variations of the CKW inequality and generalizations
to n parties have been established for a number of entangle-
ment measures in discrete as well as continuous variable
systems [20,27–39]. In particular, the squashed entangle-
ment [40] and the one-way distillable entanglement fulfill
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Eq. (1) in composite systems of arbitrary dimension [28].
Hybrid CKW-like inequalities involving entanglement and
other forms of correlations have also been proven [28,41],
while measures of quantum correlations weaker than entan-
glement generally violate the CKW inequality [42]. To some
extent, therefore, Eq. (1) does capture the spirit of
monogamy as a distinctive property of entanglement.
The main problem with CKW inequalities, however, is

that their validity is not universal, but rather depends on the
specific choice of E. Perhaps counterintuitively, several
prominent entanglement monotones, such as the entangle-
ment of formation or the distillable entanglement [3,43,44],
do not obey the constraint formalized by Eq. (1), unless
one introduces ad hoc rescalings (see, e.g., Ref. [45]).
Since entanglement as a concept is monogamous in the
n-shareability sense [7], one is led to raise the following
key question: Should any valid entanglement measure be
monogamous in a CKW-like sense?
In this Letter we address the question in general terms.

Given an entanglement measure E, we shall say that it is
monogamous if there exists a nontrivial function f∶R≥0 ×
R≥0 → R≥0 such that the generalized monogamy relation

EA∶BCðρABCÞ ≥ f(EA∶BðρABÞ; EA∶CðρACÞ); ð2Þ
is satisfied for any state ρABC on any tripartite Hilbert space
HA ⊗ HB ⊗ HC. Recalling that E is an entanglement
monotone (which in turn implies that it is nonincreasing
under partial traces), the function f in Eq. (2) is without
loss of generality such that fðx; yÞ ≥ maxðx; yÞ. Thus, to
give rise to a nontrivial constraint, we need fðx; yÞ >
maxðx; yÞ for at least some range of values of x and y.
One might further impose that fðx; yÞ is monotonic in both
its arguments, but we will not require this here. We will,
however, require that f is continuous in general.
While the CKW form Eq. (1) of a monogamy relation

[which is recovered for the particular choice fðx; yÞ ¼
xþ y] implicitly presumes some kind of additivity of the
entanglement measure in question, our general form Eq. (2)
transcends this and can be applied to recognize any entan-
glement measure E as de facto monogamous, based on the
intuition that it should obey some trade-off between the
values of EA∶B and EA∶C for a given EA∶BC, see Fig. 1.
Oppositely, if the only possible choice in Eq. (2) were
fðx; yÞ ¼ maxðx; yÞ, then the measure E would fail

monogamy in the most drastic fashion: given a state ρABC,
having EA∶BC > 0 a priori would not imply that EA∶B and
EA∶C have to constrain each other in the interval ½0; EA∶BC�.
Quite remarkably, we rigorously show in the following

that the entanglement of formation EF [43] and the relative
entropy of entanglement ER [46], which are two of the most
important entanglement monotones for mixed states [3,44],
cannot satisfy a nontrivial monogamy relation in the sense
of Eq. (2), with violations becoming generic [47] with
increasing Hilbert space dimension. We further show that a
whole class of additive entanglement measures, including
the entanglement cost E∞

F [43,48] and the regularized
relative entropy of entanglement E∞

R [49,50], also fail
monogamy as captured by Eq. (2). The latter result is
proven by a constructive argument which exploits the
peculiar properties of the maximally antisymmetric state
on Cn ⊗ Cn, which is (n − 1)-shareable yet far from
separable [51], and has hence been dubbed the “universal
counterexample” in quantum information theory [52].
Specifically, any additive entanglement measure which is
geometrically faithful in the sense of being lower-bounded
by a quantity with a sub-polynomial dimensional depend-
ence on the antisymmetric state, cannot be monogamous in
general.
Our analysis then reveals that entanglement measures

divide into two main categories: monogamous (yet geo-
metrically unfaithful) ones, like the squashed entanglement
[28,40], and geometrically faithful (yet nonmonogamous)
ones, like EF, ER, and their regularizations. Finally, we
show that this dilemma can be resolved if one relaxes the
definition Eq. (2) to introduce monogamy relations for any
fixed dimension of HA ⊗ HB ⊗ HC. Explicitly, we prove
that EF and E∞

R are retrievable as monogamous for any
finite dimension, by providing dimension-dependent
choices of f in Eq. (2), which only reduce to the trivial
one in the limit of infinite dimension.
Result (1), generic nonmonogamy for entanglement of

formation and relative entropy of entanglement.—We
begin by defining the measures employed in our analysis
[3,43,44,46]. The entanglement of formation EF is the
convex roof extension of the entropy of entanglement,
EFðρA∶BÞ ¼ inffpi;jψ iiABg

P
i piSðTrB½jψ iihψ ijAB�Þ, where

SðρÞ ¼ −Tr½ρ log ρ� is the von Neumann entropy, and
log≡ log2. On the other hand, the relative entropy of

FIG. 1. For any tripartite state ρABC, an entanglement measure E obeys monogamy if, given the
global entanglement EA∶BC, the pairwise terms EA∶B and EA∶C are nontrivially constrained. We
formalize these constraints via a function fðEA∶B; EA∶CÞ in Eq. (2). Choosing fðx; yÞ ¼ xþ y,
one gets the CKW inequality Eq. (1), which limits the pairwise terms to the triangular darker
region with dashed boundary. The other depicted shaded regions correspond to fðx; yÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

(dotted boundary) and fðx; yÞ ¼ maxðxþ cy4; yþ cx4Þ with c a constant (dot-
dashed boundary). Any measure E is termed monogamous if, for all tripartite states, the ensuing
entanglement distribution can be confined to a region strictly smaller than the white square with
solid boundary. The latter denotes the trivial choice fðx; yÞ ¼ maxðx; yÞ, which is satisfied
a priori by any entanglement monotone E.
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entanglement ER quantifies the distance from the set of
separable states, ERðρA∶BÞ ¼ infσABSðρABjjσABÞ, where the
minimization is over all separable σAB, and SðρjjσÞ ¼
Tr½ρ log ρ − ρ log σ� is the relative entropy.
The fact that both EF and ER violate the CKW

inequality Eq. (1) may be traced to their subadditivity,
meaning that there exist states ρAB and σA0C such that
EðρA∶B ⊗ σA0∶CÞ < EðρA∶BÞ þ EðσA0∶CÞ, with E denoting
either EF [53] or ER [54]. We now show that these measures
fail monogamy even in the general sense of Eq. (2). These
results are based on random induced states, defined as
follows. Given n; s ∈ N, a random mixed state ρ on Cn is
induced by Cs if ρ ¼ TrCs jψihψ j for jψi a uniformly
distributed random pure state on Cn ⊗ Cs. Note that if
s ≤ n, this is equivalent to ρ being uniformly distributed on
the set of mixed states of rank at most s onCn. Herewe focus
on the (balanced) bipartiteHilbert spaceCd ⊗ Cd, and aim to
determine, given d; s ∈ N, what is the typical value of
EFðρA∶BÞ and ERðρA∶BÞ for ρAB a random state on Cd ⊗
Cd induced by an environmentCs. The answer is as follows:

P

�����EFðρA∶BÞ −
�
logd −

1

2 ln 2

����� ≤ t

�
≥ 1 − e−cd

2t2=log2d;

ð3Þ

P(
����ERðρA∶BÞ−

�
log

�
d2

s

�
þ 1

2 ln2
s
d2

����� ≤ t) ≥ 1− e−cst
2

;

ð4Þ
where s ≤ Cd2t2= log2ð1=tÞ for any fixed t > 0 in Eq. (3),
and Cd logð1=tÞ=t2 ≤ s ≤ d2 for any fixed 0 < t < 1 in
Eq. (4), while c; C > 0 denote universal constants in both
equations. While Eq. (3) was established in Ref. [47]
(Theorem V.1), although with a looser dependence on the
parameters, Eq. (4) is an entirely original result of indepen-
dent interest. Both proofs are mathematically quite involved,
and are relegated to Ref. [55].
Importantly, failure of monogamy is then retrieved as a

generic trait of entanglement quantified by these measures.
Namely, the main result of this section is that there exist

states ρðxÞABC on Hilbert spaces HðxÞ
A ⊗ HðxÞ

B ⊗ HðxÞ
C such

that, as x → ∞,

EA∶BCðρðxÞABCÞ≤x; while EA∶BðρðxÞABÞ∼EA∶CðρðxÞACÞ∼x; ð5Þ

for E denoting either EF or ER. To sketch the proof [55],

set d ¼ ⌊2x⌋ andHðxÞ
A ≡HðxÞ

B ≡HðxÞ
C ≡ Cd. Next, consider

ρðxÞABC a random state on HðxÞ
A ⊗ HðxÞ

B ⊗ HðxÞ
C , induced by

some HðxÞ
E ≡ Cs, with s ∼ log d. In that way, ρðxÞAB and ρðxÞAC

are random states on Cd ⊗ Cd, induced by some Cs ⊗ Cd,
with s and d satisfying both the conditions for Eqs. (3)

and (4) to apply. We then have: EfF;RgðρðxÞA∶BCÞ ≤ logd ≤ x,

while EFðρðxÞA∶BÞ and EFðρðxÞA∶CÞ are both equal to

logd −Oð1Þ ∼ log d ∼ x with a probability greater than

1–2e−cd
2=log2d, and ERðρðxÞA∶BÞ and ERðρðxÞA∶CÞ are both equal

to logd − logðlog dÞ −Oð1Þ ∼ log d ∼ x with a probability
greater than 1–2e−cd log d. □

Result (2), nonmonogamy for a whole class of additive
entanglement measures.—We now show that a class of
additive entanglement measures also fail monogamy in the
sense of Eq. (2). A key role in this result is played by the
antisymmetric state, defined as follows [48,51]. Given a
subsystem A with (finite-dimensional) Hilbert space HA,
the (maximally) antisymmetric state αAn on H⊗n

A is the
normalized projector onto the antisymmetric subspace of
H⊗n

A . A crucial property of αAn is that its reduced state on
any group of k subsystems, for any 0 ≤ k ≤ n, is αAk , i.e.,
the antisymmetric state on H⊗k

A .
We now focus on entanglement monotones E satisfying

the following conditions: (a) Normalization: For any state
ρAB on HA ⊗ HB, EA∶BðρABÞ ≤ minðlogdA; log dBÞ;
(b) Lower-boundedness on the bipartite antisymmetric
state: Denoting by αAA0 the antisymmetric state on
HA ⊗ HA0 (with dA ¼ dA0 ), EA∶A0 ðαAA0 Þ ≥ c=ðlog dAÞt,
where c; t > 0 are universal constants; (c) Additivity on
product states: For any state ρAB on HA ⊗ HB,
EAm∶Bmðρ⊗m

AB Þ ¼ mEA∶BðρABÞ; (d) Linearity on mixtures
of locally orthogonal states: For any 0 ≤ λ ≤ 1, and
any states ρAB; σAB on HA ⊗ HB such that Tr½ρAσA� ¼
Tr½ρBσB� ¼ 0, EA∶B½λρAB þ ð1 − λÞσAB� ¼ λEA∶BðρABÞþ
ð1 − λÞEA∶BðσABÞ.
Important examples of entanglement measures fulfilling

the above requirements are the regularized versions of
the entanglement of formation (a.k.a. entanglement cost)
E∞
F [43,48] and of the relative entropy of entanglement E∞

R
[49,50]. Indeed, condition (c) holds by construction for any
regularized entanglement measure, defined as E∞

A∶BðρABÞ ¼
limn→∞ð1=nÞEAn∶Bnðρ⊗n

ABÞ. Furthermore, in the case of E∞
F

and E∞
R , conditions (a) and (d) are inherited as they hold for

EF and ER. Finally, condition (b) can be seen as some kind
of faithfulness (or geometry-preserving) property: given
that the antisymmetric state has constant trace distance
from the set of separable states, one may wish for an
entanglement measure to stay bounded away from 0 on the
antisymmetric state, dimension-independently as well (or
with a sub-polynomial dependence). For E being E∞

F or
E∞
R , a condition stronger than (b) in fact holds, namely,

EA∶A0 ðαAA0 Þ ≥ c, where c > 0 is a universal constant [51].
What we show here is that any entanglement measure E,

obeying properties (a)–(d), cannot satisfy a nontrivial
monogamy relation in the sense of Eq. (2). We first
establish the following result. Let n ∈ N, d ¼ 2n þ 1,
and set HAj

≡ Cd for each 0 ≤ j ≤ 2n. Assume next
that E satisfies conditions (a) and (b). Then, there exists
0 ≤ k ≤ n − 1 such that
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EA0∶A1���A2k
ðα

A2kþ1Þ ¼ EA0∶A2kþ1
���A

2kþ1
ðα

A2kþ1Þ

≥
�
1 −

lnðntþ1=cÞ
n

�

× EA0∶A1���A2kþ1
ðα

A2kþ1þ1Þ: ð6Þ

To prove Eq. (6), consider a partition of the antisym-
metric state α

A2kþ1þ1 as illustrated in Fig. 2, and set
gk ¼ EA0∶A1���A2k

ðαA0���A2k
Þ for each 0 ≤ k ≤ n. Then,

c
nt
≈

c
ðlogdÞt ≤ g0 ≤ g1 ≤ � � �≤ gn−1 ≤ gn ≤ logd≈n: ð7Þ

The last inequality is by property (a), because
dA0

¼ d ¼ 2n þ 1. The first inequality is by property (b),
because g0 ¼ EA0∶A1

ðαA0A1
Þ ≥ c=ðlog dÞt ≈ c=nt. And the

middle inequalities are by monotonicity of E under dis-
carding of subsystems, because for each 0 ≤ k ≤ n − 1,
αA0���A2k

is the reduced state of αA0���A2kþ1
. Now, Eq. (7)

implies that there exists 0 ≤ k ≤ n − 1 such that
gk=gkþ1

≥ 1 − lnðntþ1=cÞ=n. Indeed, otherwise we would
have ðg0=gnÞ¼

Q
n−1
k¼0ðgk=gkþ1Þ< f1− ½lnðntþ1=cÞ=n�gn ≤

ðc=ntþ1Þ,which contradicts Eq. (7). Then, as we have
on one hand gkþ1

¼ EA0∶A1���A
2kþ1

ðα
A2kþ1þ1

Þ, and on the

other hand gk¼EA0∶A1���A
2k
ðα

A2kþ1
Þ¼EA0∶A

2kþ1
���A

2kþ1
ðα

A2kþ1
Þ,

Eq. (6) is proven.
The main result of this section then follows immediately.

Namely, once again, there exist states ρðxÞABC on Hilbert

spaces HðxÞ
A ⊗ HðxÞ

B ⊗ HðxÞ
C such that Eq. (5) holds, for E

now denoting any entanglement measure satisfying
conditions (a)–(d).
The proof goes as follows. As E satisfies (a) and (b),

we know by Eq. (6) that, for any d ∈ N, there exists a
state ρABC on HA ⊗ HB ⊗ HC, where HA ≡ Cd and
HB ≡HC ≡ ðCdÞ⊗2k for some 0 ≤ k ≤ ⌊ log d⌋ (see
Fig. 2), such that EA∶BðρABÞ and EA∶CðρACÞ are both lower
bounded by f1 − ½logðlogtþ1d=cÞ= log d�gEA∶BCðρABCÞ ¼
½1 − oð1Þ�EA∶BCðρABCÞ. Now, by property (c), for any
m ∈ N, considering ρ⊗m

ABC instead of ρABC (and relabeling
A⊗m into A etc.) will multiply all values of E by a factor m.
By property (d), for any 0 ≤ λ ≤ 1 and any separable state
σABC (across the cut A∶BC) which is locally orthogonal to
ρABC, considering λρABC þ ð1 − λÞσABC instead of ρABC
will multiply all values of E by a factor λ. Consequently,
any value x > 0 for EA∶BCðρABCÞ is indeed attainable,

on some suitably large Hilbert space HðxÞ
A ⊗ HðxÞ

B ⊗
HðxÞ

C . □

Recapitulating, we demonstrated that entanglement
measures which faithfully capture the geometric properties
of the antisymmetric state cannot be monogamous in
general. Conversely, there exist relevant entanglement
measures for which the desirable condition (b) does not
hold—such as the squashed entanglement, which scales as
oð1=dAÞ on the antisymmetric state αAA0—yet monogamy
holds instead, even in the original CKW form Eq. (1)
[28,40]. This is the origin of the “monogamy vs faithful-
ness” dilemma discussed in the introduction.
Result (3), recovering monogamy: dimension-dependent

relations.—In the previous two sections, we proved that
several important entanglement measures cannot obey a
monogamy relation of the form Eq. (2) with f a universal
function. Nevertheless, it may become possible to establish
such an inequality if we allow the function f to be
dimension dependent. For instance, the squared entangle-
ment of formation obeys the CKW inequality for arbitrary
three-qubit states [36], which means that choosing
fðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
in Eq. (2), as depicted in Fig. 1 (dotted

boundary), makes EF monogamous when restricted to
Hilbert spaces with dA ¼ dB ¼ dC ¼ 2.
The third main result of this Letter is to show that

nontrivial dimension-dependent monogamy relations can
be established for EF and E∞

R in any finite dimension.
Concretely, for any state ρABC on a Hilbert space
HA ⊗ HB ⊗ HC, it holds

EFðρA∶BCÞ ≥ max

�
EFðρA∶BÞ þ

c
dAdClog8dA;C

½EFðρA∶CÞ�8;

EFðρA∶CÞ þ
c

dAdBlog8dA;B
½EFðρA∶BÞ�8

�
;

ð8aÞ

E∞
R ðρA∶BCÞ≥ max

�
E∞
R ðρA∶BÞþ

c0

dAdClog4dA;C
½E∞

R ðρA∶CÞ�4;

E∞
R ðρA∶CÞ þ

c0

dAdBlog4dA;B
½E∞

R ðρA∶BÞ�4
�
;

ð8bÞ

where c; c0 > 0 are universal constants, and we set
dA;B ¼ minðdA; dBÞ, dA;C ¼ minðdA; dCÞ. An instance of
Eq. (8b) is qualitatively illustrated in Fig. 1 (dot-dashed
boundary).
The proof of Eqs. (8) makes use of results from

Refs. [50,61–63], and is provided in Ref. [55]. While
Eqs. (8) may not be tight [55], they do establish that
the involved entanglement measures can be effectively
regarded as monogamous according to Eq. (2) in any finite
dimension, even though the constraints become trivial in
the limit of infinite dimension, in agreement with results (1)
and (2). Notice further that Eqs. (8) encapsulate strict

FIG. 2. Schematic of the antisymmetric state α
A2kþ1þ1

partitioned into three subsystems, A≡ A0, B≡ A1 � � �A2k , and
C≡ A2kþ1 � � �A2kþ1 .
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monogamy, as the constraining functions satisfy fðx; yÞ >
maxðx; yÞ for all positive x and y. This implies that if, say,
EðρA∶BÞ ¼ EðρA∶BCÞ, then EðρA∶CÞ ¼ 0 for E being either
EF or E∞

R , which means that A and C must be unentangled,
as both measures vanish only on separable states.
Conclusions.—We addressed, on general grounds, the

question of whether entanglement measures should be
monogamous in the sense of obeying a quantitative con-
straint akin to Eq. (1) introduced in Ref. [25]. We showed
that paradigmatic measures such as the entanglement of
formation and the relative entropy of entanglement, as well
as their regularizations, cannot be monogamous in general,
as they cannot satisfy any nontrivial general relation of the
form Eq. (2) limiting the distribution of bipartite entangle-
ment in arbitrary tripartite states. Monogamy can nonethe-
less be recovered if the constraints are made dependent on
the (finite) dimension of the system.
The present study substantially advances our under-

standing of entanglement and the complex laws governing
its distribution in systems of multiple parties, and paves the
way to more practical developments in quantum commu-
nication and computation. The concept of monogamy as
studied here is of particular physical relevance, as the
structure of Eq. (2) lends itself to be applied repeatedly to
establish limitations in a many-body scenario [5], allowing
one to compare the distribution of entanglement on equal
footing across the various parts of a composite system,
unlike, e.g., the case of hybrid monogamy relations
involving different quantifiers [28].
It will be worth investigating further links between the

phenomenon of monogamy and the so-called quantum
marginal problem [64] as well as the fact that information
cannot be arbitrarily distributed in multipartite quantum
states [65–68]. Implications of our study for progress in
other fields like condensed matter [5] and cosmology [69],
where monogamy of entanglement takes center stage, also
deserve further study.
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