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Consider a two-party correlation that can be generated by performing local measurements on a bipartite
quantum system. A question of fundamental importance is to understand how many resources, which we
quantify by the dimension of the underlying quantum system, are needed to reproduce this correlation. In
this Letter, we identify an easy-to-compute lower bound on the smallest Hilbert space dimension needed to
generate a given two-party quantum correlation. We show that our bound is tight on many well-known
correlations and discuss how it can rule out correlations of having a finite-dimensional quantum
representation. We show that our bound is multiplicative under product correlations and also that it
can witness the nonconvexity of certain restricted-dimensional quantum correlations.
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In what ranks as one of the most important achievements
of modern physics, it was shown by John Bell in 1964 that
some correlations generated within the framework of
quantum mechanics can be nonlocal, in the sense that
the statistics generated by quantum mechanics cannot
always be reproduced by a local hidden-variable model
[1,2]. Over the last 40 years, there have been significant
efforts in trying to verify this fact experimentally. The first
such experimental data [3] were published in 1972, and this
remains an active area of research [4]. Moreover, as a
central concept in quantum physics and quantum informa-
tion theory, fully understanding quantum entanglement and
nonlocality still remains a very interesting and important
problem with far-reaching applications. Indeed, profound
relationships between quantum nonlocality and other fun-
damental quantum concepts or phenomena such as entan-
glement measures [5,6], entanglement distillation [7,8], and
teleportation [9] have been identified. Meanwhile, for many
tasks, e.g., in cryptography [10,11], it has been realized that
due to quantum nonlocality, quantum strategies enjoy
remarkable advantages over their classical counterparts.
However, even though quantum nonlocal effects can lead

to interesting and often surprising advantages in some
applications, this does not paint the full picture. After all,
for practical applications, it is just as important to under-
stand the amount of quantum resources required for these
advantages to manifest. For instance, if there is an expo-
nential blowup in the amount of resources required, then
whatever advantage gained by employing quantum
mechanics may not be useful in practice. Quantifying
the amount of quantum resources needed to perform a
certain task is the central focus of this Letter.
We study quantum nonlocality from the viewpoint of

two-party quantum correlations that arise from a Bell
experiment. A two-party Bell experiment is performed

between two parties, Alice and Bob, whose labs are set up in
separate locations. Alice (respectively, Bob) has in her
possession a measurement apparatus whose possible
settings are labeled by the elements of a finite set X
(respectively, Y), and the possible measurement outcomes
are labeled by a finite set A (respectively, B). After repeating
the experiment many times, Alice and Bob calculate the
joint conditional probabilities pðabjxyÞ, i.e., the probability
that upon selecting measurement settings ðx; yÞ ∈ X × Y,
they get outcomes ða; bÞ ∈ A × B. The collection of all
joint conditional probabilities is arranged in a vector
p ¼ ½pðabjxyÞ� of length jA × B × X × Yj, which we call
a correlation.
Given a Bell experiment as described above, a natural

problem is to characterize the correlations that can arise
with respect to various physical models. The set of
correlations generated by a local hidden-variable model
forms a convex polytope, and its elements are called local
correlations. A correlation p ¼ ½pðabjxyÞ� is called quan-
tum if it can be generated by performing local measure-
ments on a shared quantum system which is prepared in a
state independent of the measurement choices. Formally,
p ¼ ½pðabjxyÞ� is quantum if there exists a quantum state ρ
acting on the Hilbert space Cd ⊗ Cd and local positive-
operator valued measures (POVMs) fMxa∶ a ∈ Ag and
fNyb∶ b ∈ Bg each acting on Cd such that

pðabjxyÞ ¼ Tr½ðMxa ⊗ NybÞρ�: ð1Þ

For a correlation of the form (1), we say that p admits a
d-dimensional representation. Furthermore, we denote by
DðpÞ the minimum integer d ≥ 1 for which the correlation
p admits a d-dimensional representation. Note that the case
DðpÞ ¼ 1 corresponds to local correlations where Alice
and Bob only use private randomness.
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As we only consider finite-dimensional Hilbert spaces,
we can replace the tensor product structure with commu-
tation relations and obtain an equivalent definition [12].
Considering the central role that quantum correlations

play in many applications and the fact that Hilbert space
dimension is a valuable resource, a natural and fundamental
problem is as follows: Given a quantum correlation
p ¼ ½pðabjxyÞ�, what is the smallest dimension of a
quantum system needed to generate p; i.e., what is DðpÞ?
This problem is nondeterministic polynomial time (NP)

hard to solve exactly in general [13], and limited progress
has been reported; see Ref. [12] for a summary of results.
One of the most successful approaches employs the notion
of dimension witnesses [14] (see also Refs. [15–17]).
Furthermore, the framework of dimension witnesses has
been also used to derive dimension lower bounds in the
prepare-and-measure scenario [18].
In the setting of Ref. [14], a d-dimensional representa-

tion of a correlation p ¼ ½pðabjxyÞ� is defined as a convex
combination of correlations of the form (1). Operationally,
this means that the preparations of the quantum states and
the POVMs depend on the value of a public random
variable, which they consider to be a free resource.
The assumption of free public randomness implies that the

set of correlations admitting a d-dimensional representation,
denoted by Qd, is convex. A d-dimensional witness is
defined as a hyperplane H that contains Qd in one of its
half-spaces. Consequently, for any correlation p that lies
strictly in the opposite half-space, H witnesses that p∉Qd.
Note that sinceQd is convex, such a hyperplane exists for any
p∉Qd. On the negative side, finding such a hyperplane (for a
given correlation and a fixed d ≥ 1) is a challenging task.
On the other hand, if public randomness is not a free

resource, i.e., it must be embedded into the entangled
state jψi, the set of quantum correlations admitting a
d-dimensional representation [as defined in (1)] is not
always convex [19]. The lack of convexity in this setting
suggests that the problem of lower bounding the size of the
quantum system needed to generate a correlation is more
complicated. In particular, the approach of using separating
hyperplanes is no longer applicable. Nevertheless, this is a
realistic and interesting setting, e.g., when public random-
ness is not available, or when we need to compare the
resources required by a classical scheme and those by a
pure quantum scheme to generate a given correlation.
In this Letter, for the case that public randomness is not a

free resource, we give an easy-to-compute lower bound on
DðpÞ which only depends on the values of the joint
conditional probabilities pðabjxyÞ. To derive the bound,
we use an approach that combines a novel geometric
characterization for the set of quantum correlations given
in Ref. [20] with techniques that were recently introduced
to lower bound the positive semidefinite rank [see (19) for a
definition] of an entrywise non-negative matrix [21], a
fundamental quantity in both mathematical optimization

and quantum communication theory [22,23]. We then apply
our lower bound to show that it is tight on many well-
known correlations. Afterwards, we also detail various
other applications.
Deriving our lower bound.—The first ingredient in

proving our lower bound on the Hilbert space dimension
relies on the fact that, without loss of generality, we can
assume Alice and Bob share a pure state on the Hilbert
space Cd ⊗ Cd. To argue this, suppose p ¼ ½pðabjxyÞ� is
generated by a mixed state ρ acting on Cd ⊗ Cd. Consider
its purification jψi ∈ Cd ⊗ Cd ⊗ Z, then look at its
Schmidt decomposition jψi ≔ P

d
i¼1 λijaiiCd jbiiCd⊗Z ,

where we allow λi ¼ 0 in the Schmidt decomposition
for convenience. Note that since the first subsystem is d
dimensional, we have d terms in the Schmidt decomposi-
tion. Consider the maps U ≔

P
d
j¼1 jjihajj and V ≔P

d
j¼1 jjihbjj and define the pure quantum state jψ 0i ≔

ðU ⊗ VÞjψi ∈ Cd ⊗ Cd, returning to the original Hilbert
spaces. By adjusting the measurement operators using U
and V, we can construct a d-dimensional representation for
p using the pure state jψ 0i ∈ Cd ⊗ Cd. A similar proof
shows that Alice and Bob’s quantum systems can be of
the same dimension (being the minimum dimension of
the original two systems).
The second ingredient in proving our lower bound is a

recent characterization for the correlations that admit a
d-dimensional representation with a pure quantum state.
Specifically, it was shown in Ref. [20] that a correlation
p ¼ ½pðabjxyÞ� is generated by a pure quantum state jψi ∈
Cd ⊗ Cd if and only if there exist d × d Hermitian positive
semidefinite matrices fExa∶ a ∈ A; x ∈ Xg and fFyb∶ b ∈
B; y ∈ Yg satisfying the following conditions:

pðabjxyÞ ¼ TrðExaFybÞ for all a; b; x; y; ð2Þ
X
a∈A

Exa ¼
X
b∈B

Fyb for all x; y: ð3Þ

Combining this with the fact that we can assume that a
correlation is generated by a pure state, we have that for a
quantum correlation p ¼ ½pðabjxyÞ�, DðpÞ is equal to the
smallest integer d ≥ 1 for which there exist d × d
Hermitian positive semidefinite matrices fExa∶ a ∈ A; x ∈
Xg and fFyb∶ b ∈ B; y ∈ Yg satisfying (2) and (3).
We now have all the necessary ingredients to derive

our lower bound onDðpÞ. For the remainder of this section,
fix a correlation p ¼ ½pðabjxyÞ�, set d ≔ DðpÞ, and let
fExa∶ a ∈ A; x ∈ Xg and fFyb∶ b ∈ B; y ∈ Yg be two
families of d × d matrices satisfying (2) and (3). Notice
that

P
aExa has full rank for any x [otherwise, by restricting

on its support, we can construct a new family of matrices of
size strictly less than d satisfying (2) and (3), which
contradicts the minimality of d]. We first create a family
of POVMs by defining the invertible matrix U such that
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UðPaExaÞU† ¼ Id. Thus, fE0
xa ≔ UExaU†∶ a ∈ Ag is a

POVM for any choice of x. Notice we can write

pðabjxyÞ ¼ fybTrðE0
xaF0

ybÞ; ð4Þ

for all a, b, x, y, where F0
yb ≔ ðU−1Þ†FybU−1=fyb and fyb

is the normalizing factor so that F0
yb is a quantum state.

Notice now that pðabjxyÞ=fyb is the probability of
outcome a when F0

yb is measured with the POVM
fE0

xa∶ a ∈ Ag when fyb > 0. Recall that the fidelity
between two quantum states ρ and σ is defined as
Fðρ; σÞ ≔ ∥ ffiffiffi

ρ
p ffiffiffi

σ
p

∥1. Note that the fidelity can only
increase after a measurement [24]; thus, we have

FðF0
y1b1

; F0
y2b2

Þ ≤
X
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðab1jxy1Þ

fy1b1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðab2jxy2Þ

fy2b2

s
ð5Þ

for all x. Furthermore, we have that TrðρσÞ ≤ Fðρ; σÞ2,
implying

TrðF0
y1b1

F0
y2b2

Þ ≤ FðF0
y1b1

; F0
y2b2

Þ2: ð6Þ

Since pðabjxyÞ is a probability distribution for all x, y, it
follows from (4) that

P
bfyb ¼ 1 for all y. We now define

the mixed state ρy ≔
P

bfybF
0
yb for all y. Since

P
bFyb is

independent of y from (3), we have that

ρy1 ¼ ρy2 ; for all y1; y2: ð7Þ

Since ρy is a mixed quantum state over Cd, we have that

Trðρ2yÞ ≥
1

d
; for all y: ð8Þ

Combining Eqs. (5)–(8), it follows that d is lower
bounded by

max
y1;y2

�X
b1;b2

minx

�X
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðab1jxy1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðab2jxy2Þ

p �
2
�
−1
:

ð9Þ

Note that we could have transformed the matrices Fyb into
the measurements instead of the matrices Exa. Repeating
the above analysis in this case, we arrive at

max
x1;x2

�X
a1;a2

miny

�X
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pða1bjx1yÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pða2bjx2yÞ

p �
2
�
−1

ð10Þ

as another lower bound on DðpÞ. We collect these two
lower bounds on DðpÞ in the main theorem of this
Letter, below.

Theorem: For any quantum correlation p, we have that

DðpÞ ≥ ⌈maxff1ðpÞ; f2ðpÞg⌉; ð11Þ

where f1ðpÞ and f2ðpÞ denote the expressions given in (9)
and (10), respectively, and ⌈a⌉ is the least integer t such
that t ≥ a.
Applications.—In the rest of this Letter, we illustrate the

usefulness of our lower bound for various applications.
Several well-known correlations.—We start by showing

that the lower bound can be tight. Let A ¼ B ¼ X ¼
Y ¼ f0; 1g, and consider the quantum correlation given by

pðabjxyÞ ¼
(
ð2þ ffiffiffi

2
p Þ=8 if a ⊕ b ¼ xy

ð2 − ffiffiffi
2

p Þ=8 if a ⊕ b ≠ xy;
ð12Þ

where ⊕ denotes the logical exclusive OR of two bits. This
correlation corresponds to the optimal strategy for the
Clauser-Horne-Shimony-Holt game [25], which can be
generated using the quantum state 1=

ffiffiffi
2

p ðj00iþj11iÞ∈
C2⊗C2. Applying our lower bound to the above correlation,
we obtain f1ðpÞ ¼ 2, which is tight.
We next consider a correlation in the setting X ¼

Y ¼ f1; 2; 3g, A ¼ B ¼ f0; 1g3 generated using the state
1
2
ðj0011i− j0110i− j1001iþ j1100iÞ∈C4⊗C4 given by

pðabjxyÞ ¼
8<
:

1=8 if ay ¼ bx; a has even parity;

and b has odd parity

0 otherwise:

ð13Þ

This correlation is optimal for the magic square game
[26–28]. Using (9), we can easily show that f1ðpÞ ¼ 4,
which is again tight.
In addition to the above examples of extremal correla-

tions, we would now like to discuss some examples which
are nonextremal. We now discuss correlations in connec-
tion to a Bell inequality [Eq. (5) in Ref. [14]], where jXj ¼
jBj ¼ 2 and jAj ¼ jYj ¼ 3. It was shown in Ref. [14] that
the maximal violations require a two-qutrit state to achieve.
By trying our lower bound on some near maximally
violating correlations (found numerically), we find that
our lower bound yields 2� ϵ for small ϵ > 0. Thus, after
rounding up, it sometimes gives a tight result. Interestingly,
there are some nonlocal correlations which do not violate
the Bell inequality, but our lower bound is strictly greater
than 2, yielding a tight bound once rounded up. This
illustrates the fact that our bound is independent of any Bell
inequalities and complements the approach of dimension
witness.
As a last example, we study the I3322 Bell inequality

[29]. The maximal value of I3322 is 0.25 when restricted to
using qubit states, and numerical evidence shows that the
maximal violation requires infinite-dimensional Hilbert
spaces [30]. When evaluating our lower bound on some
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correlations with I3322 value greater than 0.25, we get
values between 1 and 2, which is not tight. Indeed, as the
correlations approach the maximum I3322 value, the
probabilities in the numerical simulations are bounded
away from 0, and thus our lower bound does not
grow large.
Witnessing the nonconvexity of restricted-dimensional

quantum correlations.—It is known that the extreme points
of the set of quantum correlations in the jXj ¼ jYj ¼ jAj ¼
jBj ¼ 2 setting can be generated using a two-qubit state
[31]. It has been shown numerically that some correlations
in this setting require at least a two-qutrit state to generate
[19], thus implying that the setD2 ≔ fp∶DðpÞ ≤ 2g is not
convex. Using our lower bound, we can give an analytical
proof of this fact. Consider the following three determin-
istic correlations in D2:

p1ðabjxyÞ ¼ 1 if ða ¼ 1 and b ¼ 1Þ; 0 otherwise;

p2ðabjxyÞ ¼ 1 if ða ¼ 0 and b ¼ 0Þ; 0 otherwise;

p3ðabjxyÞ ¼ 1 if ða ≠ x and b ≠ yÞ; 0 otherwise:

Setting p ¼ 1
3
p1 þ 1

3
p2 þ 1

3
p3, we have that f1ðpÞ ¼

9=4 > 2. Thus, p∉D2, witnessing the nonconvexity of D2.
Witnessing nonquantumness.—We now consider a

generalization of the Popescu-Rohrlich box [32,33] in
the setting X ¼ Y ¼ f0; 1g, A ¼ B ¼ f0; 1;…; d − 1g
given by

pðabjxyÞ ¼
�
1=d if xy ¼ ðb − aÞ mod d

0 if xy ≠ ðb − aÞ mod d:
ð14Þ

A sufficient condition was derived in Ref. [34], which
witnesses that p is not quantum (see also Ref. [35]). We can
readily verify that f1ðpÞ ¼ þ∞, yielding an alternative
proof that it has no finite-dimensional quantum
representation.
We proceed to show that a second family of correlations

is not finite-dimensional quantum. In particular, in the
setting X ¼ Y ¼ A ¼ B ¼ f0; 1g, consider any correlation
p which satisfies

pðabjxyÞ ¼ 0 if ðx∨a ¼ y∨bÞ ð15Þ

when ðx; yÞ ≠ ð1; 1Þ, where ∨ denotes the logical OR of two
bits. Such correlations correspond to perfect strategies for
the Fortnow-Feige-Lovász game [36,37]. It follows from
the computation of the entangled value of this game [38]
that such a quantum correlation cannot exist. By examining
the pattern of 0s in the correlation, we can apply the same
argument as before to conclude that there is no finite-
dimensional quantum representation of p.
Multiplicity of the lower bound under product correla-

tions.—For i ∈ f1;…; kg, consider quantum correlations
pi, on the settings Xi, Yi, Ai, and Bi, respectively. Define

the product correlation p1;…;k on X ¼ ×k
i¼1Xi, Y ¼ ×k

i¼1Yi,
A ¼ ×k

i¼1Ai, and B ¼ ×k
i¼1Bi, given by

p1;…;kðabjxyÞ ≔ Πk
i¼1piðaibijxiyiÞ: ð16Þ

Clearly, since we can generate p using k separated sub-
systems, we have Dðp1;…;kÞ ≤ Πk

i¼1DðpiÞ. We now iden-
tify a sufficient condition for this to hold with equality.
It is straightforward to verify that f1, defined in (9),

multiplies under product correlations, i.e.,

f1ðp1;…;kÞ ¼ Πk
i¼1f1ðpiÞ: ð17Þ

Thus, if f1ðpiÞ ¼ DðpiÞ for all i ∈ f1;…; kg, we get that

Dðp1;…;kÞ ¼ Πk
i¼1DðpiÞ: ð18Þ

Clearly, the same argument holds if we replace f1 by f2.
For a concrete example, let p1 and p2 be the correlations

given in (12) and (13), respectively, and define p1;2 to be
the corresponding product correlation. Following the dis-
cussion above, to generate the correlation p1;2, one would
need a Hilbert space of (local) dimension eight, and there is
no way to save on resources in this case. Note that using
this idea, we can construct quantum correlations with
various input and output sizes on which our lower bound
is tight.
Also, if it happens to be the case that our lower bound

witnesses that pi is not finite-dimensional quantum for
some i ∈ f1;…; kg, e.g., if pi is the example (14) for some
d ≥ 1, then p1;…;k cannot be finite-dimensional quantum
either.
Relation to positive semidefinite rank (PSD rank).—As

our last example, we show that our lower bound on Hilbert
space dimension has a close relationship with lower bounds
for the PSD rank. The PSD rank of an entrywise non-
negative n ×m matrix X is the smallest integer c ≥ 1 such
that there exist c × c positive semidefinite matrices
A1;…; An, B1;…; Bm satisfying

Xi;j ¼ TrðAiBjÞ for all i; j: ð19Þ

Note the resemblance of (19) to condition (2). Now
consider a Bell scenario where jXj ¼ jYj ¼ 1; i.e., Alice
and Bob each have only one choice of measurement. In this
setting, we have that any correlation p ¼ ½pðabÞ� is
quantum and DðpÞ is known as the quantum correlation
complexity of p [39]. In Ref. [40], it is shown that in this
special case, DðpÞ is equal to the PSD rank of the
corresponding correlation matrix

P
a;bpðabÞjaihbj, where

the vectors are in the computational basis. Thus, our lower
bound specialized to the case jXj ¼ jYj ¼ 1 becomes a
lower bound for PSD rank itself, which was first given in
Ref. [21]. We point out that lower bounding the PSD rank is
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an important task in mathematical optimization and quan-
tum communication complexity theory [41].
For general Bell scenarios, we note that the PSD rank of

the matrix
P

a;b;x;ypðabjxyÞjxaihybj is a lower bound on
DðpÞ; thus, the lower bounds for the PSD rank can also be
used to lower boundDðpÞ. As an example, we consider the
correlation given in (13). When viewed as a lower bound on
DðpÞ, the lower bound on the PSD rank from Ref. [21] is
equal to 2, while our lower bound (11) gives 4.
Conclusions.—In this work, we derived a tractable lower

bound for the minimum dimension of a Hilbert space
needed to generate a given two-party quantum correlation
and gave a variety of applications. Since quantum corre-
lations constitute a fundamental concept in quantum
physics and Hilbert space dimension is regarded as an
expensive and valuable resource, we hope our results will
provide new insights for studying quantum correlations and
prove to be useful for their applications. As an example, our
lower bound has the feature that it is composed of very
simple functions of the probabilities ½pðabjxyÞ�. This is
very useful for analyzing the effect of perturbations or
uncertainty in the correlation data. Suppose two exper-
imentalists create their estimate p0 for the actual value of
the correlation p. Then, they can use the lower bounds (9)
and (10) to get an estimate for the actual dimensions of their
quantum systems, if they know that for all a, b, x, y, they
have jpðabjxyÞ − p0ðabjxyÞj ≤ ϵ, for some small positive
constant ϵ. In other words, there is some threshold for the
number of experiments needed such that the two parties
are fairly confident that the dimensions of their quantum
systems is at least one fewer than the value given by our
lower bounds when applied to their experimental data.
Thus, our bound is quite robust against experimental
uncertainty.
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