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We explore different Skyrmion types in the lowest Landau level of graphene at a filling factor ν ¼ �1. In
addition to the formation of spin and valley pseudospin Skyrmions, we show that another type of spin-
valley entangled Skyrmions can be stabilized in graphene due to an approximate SU(4) spin-valley
symmetry that is affected by sublattice symmetry-breaking terms. These Skyrmions have a clear signature
in spin-resolved density measurements on the lattice scale, and we discuss the expected patterns for the
different Skyrmion types.
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Originally proposed in the framework of nuclear physics
[1], Skyrmions have found physical reality in condensed-
matter systems as topological textures of two-dimensional
(2D) ferromagnets (FMs). Probably its conceptually purest
form is realized in 2D electrons in a strong magnetic field B
[2]—since their kinetic energy is quenched into highly
degenerate Landau levels (LLs), all electrons spontane-
ously align their spins to minimize their Coulomb energy
when there are as many electrons in a single LL as flux
quanta threading the system. In the lowest LL, this
corresponds to a filling factor ν ¼ 1, whereas in graphene
the same situation is encountered also at ν ¼ −1, due to
particle-hole symmetry [3,4]. In both systems, Skyrmions
carry an electric charge given by their winding and have a
lower energy than simple spin-flip excitations. In GaAs
heterostructures, Skyrmion formation yields a rapid decay
of the magnetization in the vicinity of ν ¼ 1, as measured in
NMR experiments [5]. More recently, Skyrmions have
regained interest [6] after their discovery in chiral magnets
[7] and thin magnetic layers on heavy-metal substrates [8].
They are promising candidates for spintronics application
as they can easily be manipulated by ultrasmall currents [9].
While characterized by the same type of winding numbers,
Skyrmions in these materials differ from quantum Hall
Skyrmions since they are bosonic quasiparticles and do not
carry a quantized charge [10].
A promising material that combines the conceptual

simplicity of quantum Hall (QH) systems and the direct
accessibility as a surface material is graphene. Moreover,
graphene is characterized by an additional pseudospin
reflecting the two relevant valleys for its low-energy
electronic properties [3]. Since theCoulomb energy respects
to great accuracy this pseudospin symmetry [4], one
encounters a particular form of SU(4) ferromagnetism
[11–13] that allows for a much richer variety of
Skyrmions involving the valley pseudospin. Although
valley Skyrmions have been studied in other materials
[14], the identity between valley and sublattice in the central

n ¼ 0 LL [4] makes graphene an ideal candidate for a
direct measurement of valley Skyrmions, e.g., within spin-
resolved scanning tunneling spectroscopy (STS). Because
all electrons of a particular valley thus reside on a single
sublattice, the valley pseudospin can be directly visualized
by the sublattice occupation. This would allow for a direct
measurement of pseudospin Skyrmions that are, e.g.,
depicted in Fig. 1 and their size as a function of B.
In this Letter, we illustrate the different Skyrmion types

in graphene at ν ¼ �1. Beyond the expected spin and
pseudospin Skyrmions, we find a phase diagram with
highly unusual Skyrmions with spin and pseudospin
entanglement. Whereas such Skyrmions naturally arise
in a purely SU(4)- [11,13], or more generally in any

FIG. 1. Pseudospin Skyrmions in an easy-axis [(a)] and an
easy-plane pseudospin [(b)] FM background. The two subfigures
sketch the lattice-resolved total electronic density ρtot in the n ¼ 0
LL. The insets show the pseudospin Bloch sphere, which is
entirely covered. In each Bloch sphere, the orange and gray
arrows show the polarization of the FM background at r → ∞
and in the center, respectively. At intermediate values of r, all
other parts of the Bloch sphere are explored. The spin (not shown)
is homogeneously polarized. For illustration, we have used much
smaller Skyrmion sizes (on the order of some lattice spacings)
than encountered in an experimental situation (see text). Panels
(a) and (b) correspond to points 3 and 2 in Fig. 2, respectively.
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SUðKÞ-symmetric model [15], their occurrence in sym-
metry-broken situations has remained an open issue. Apart
from a theoretical classification of the different Skyrmion
types in terms of Bloch spheres, we show how these
Skyrmions can be identified by their spin- and lattice-
resolved electronic densities. Such densities are precisely
accessible in STS, and our results may therefore be a guide
in the spectroscopic identification of the different
Skyrmions in graphene, beyond spin Skyrmions in the
above-mentioned other systems.
Our study is based on the nonlinear σ model

E½ZðrÞ� ¼ ESUð4Þ½ZðrÞ� þ ESB½ZðrÞ� ð1Þ

in terms of the spatially varying CP3 field [11,15–17]

ZðrÞ ¼ ½υK↑ðrÞ; υK↓ðrÞ; υK0↑ðrÞ; υK0↓ðrÞ�T; ð2Þ

whose four complex components represent the spin and
pseudospin amplitudes in n ¼ 0, and r ¼ ðx; yÞ is the
planar coordinate. Its first term is SU(4) symmetric,

ESUð4Þ½ZðrÞ� ¼ 2ρS

Z
d2rDZ†ðrÞ · DZðrÞ

þ 1

2

Z
d2rd2r0ρtopoðrÞVðr − r0Þρtopoðr0Þ;

ð3Þ

with the spin stiffness ρS ¼ e2=16
ffiffiffiffiffiffi
2π

p
ϵlB [2,18], the

gradient DZ ¼ ∇ZðrÞ − ½Z†ðrÞ∇ZðrÞ�ZðrÞ, and the mag-
netic length lB ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

. The second term is the Coulomb
interaction VðrÞ ¼ e2=ϵjrj between the charge-density
fluctuations that are, at ν ¼ �1, identical to the topological
charge density ρtopoðrÞ ¼ −ði=2πÞ½DZðrÞ† ×DZðrÞ�z
[18,19]. Apart from the SU(4) symmetric term, the model
also hosts symmetry-breaking terms,

ESB½ZðrÞ� ¼
ΔZ

2

Z
d2r
2πl2B

½u⊥ðP2
x þ P2

yÞ þ uzP2
z − Sz�; ð4Þ

with the spin and pseudospin magnetizations

S ¼ Z†ðrÞð1 ⊗ σÞZðrÞ; P ¼ Z†ðrÞðσ ⊗ 1ÞZðrÞ; ð5Þ

respectively, where σ ¼ ðσx; σy; σzÞ combines the three
Pauli matrices. (An explicit expression of the spin and
pseudospin densities, in terms of the CP3-field components
can be found in the Supplemental Material [20].) The
parameters uz and u⊥, which are presented in units of the
Zeeman energy ΔZ, describe, e.g., the pseudospin-sym-
metry breaking due to out-of-plane [21] or in-plane [22]
lattice distortions, or a symmetry breaking of the interaction
at the lattice scale [12], and have been estimated to be all on
the order of 0.1–0.2 meV × B½T�, while the Zeeman effect

is in the same range ΔZ ≃ 0.1 meV × B½T�. For realistic
magnetic fields, this is much smaller than the leading
(interaction) energy scale ρS ∼ e2=ϵlB ≃ 50 meV×ffiffiffiffiffiffiffiffiffi
B½T�p

=ϵ. However, we emphasize that while the hierarchy
of energy scales is well corroborated, the precise values of
uz and u⊥ are unknown and are likely to depend on the
substrate. We therefore use them as phenomenological
parameters in our study.
Because at large distances from their center, Skyrmions

approach the underlying FM background state, let us first
discuss the phase diagram of homogeneous FM states
described by a normalized spinor ZðrÞ ¼ F, similarly to
Refs. [23] and [24] at ν ¼ 0. These states minimize
the leading SU(4)-symmetric energy functional (3),
ESUð4Þ ¼ 0, since all gradient terms vanish, and the sym-
metry-breaking terms (4) thus determine the FM phase
diagram (Fig. 2). Since the Zeeman term acts solely on the
spin, and spin and pseudospin magnetic orders coexist at
ν ¼ �1, all phases display a homogeneous spin magneti-
zation in the z direction. For uz ≤ 1=2 or u⊥ ≤ 1=2, the spin
and pseudospin magnetizations are disentangled, and one
obtains an easy-plane pseudospin FM, with, e.g.,
F ¼ ð1; 0;�1; 0ÞT= ffiffiffi

2
p

, for uz > u⊥ and an easy-axis
pseudospin FM, with F¼ð1;0;0;0ÞT or F ¼ ð0; 0; 1; 0ÞT,
for uz < u⊥, in addition to a full spin polarization. We
stress that in n ¼ 0 valley and sublattice are identical in the
sense that the wave functions of an electron in a specific
valley have only components on a particular sublattice [20].
The easy-axis pseudospin FM therefore takes the form of a
charge-density wave with all spin-polarized electrons

FIG. 2. Phase diagram of Q ¼ 1 Skyrmions (labeled in red,
blue, and yellow) and the pseudospin FM background state
(sketched in black), as a function of uz and u⊥ (in units of the
Zeeman energy ΔZ). The parameters used correspond to a field
B ¼ 10 T.
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localized on a single sublattice, whereas both sublattices are
equally populated in an easy-plane pseudospin FM.
The most interesting phases are obtained for uz, u⊥ >

1=2 where the spin and pseudospin magnetizations are
partially entangled due to energetic frustration. According
to Eq. (4), the pseudospin contribution to the anisotropy
energy is lowered when all components of the pseudospin
magnetization are minimized. As an extreme case, we
consider a superposition F ¼ ð1; 0; 0; 1Þ= ffiffiffi

2
p

with spin-up
electrons on the A sublattice and spin-down particles on the
B sublattice, such that P ¼ 0. Somewhat counterintuitively,
this state whose spin-density pattern is antiferromagnetic
remains a particular SU(4) FM since it can be obtained
from a pure spin (and pseudospin) FM via a rotation in the
SU(4) space. The drawback of such a state with P ¼ 0 is a
cost in the spin contribution (i.e., Zeeman energy) to the
anisotropy energy in Eq. (4), because the amplitude of the
spin magnetization jSj also vanishes according to the
equation jSj ¼ jPj ¼ j cos αj that is valid [13] for a generic
CP3 spinor. Therefore, this state can only be realized in the
limit ΔZ → 0. For finite ΔZ, uz > 1=2, and u⊥ > 1=2,
energy optimization leads to states with partially entangled
spin and pseudospin, with either easy-plane (uz > u⊥) or
easy-axis character (uz < u⊥).
To compute the phase diagram of CP3 Skyrmions with

topological charge Q ¼ 1, we use that the by far largest
contribution to the Skyrmion energy is given by the
gradient term in Eq. (3). Minimizing this contribution,
we obtain a Skyrmion with energy Esk ¼ 4πρS of the form

Zskyrðx; yÞ ¼ N ðrÞ−1½ðxþ iyÞF − λðrÞC�; ð6Þ

with constant λðrÞ ¼ λ0 and r ¼ jrj. F is the CP3 spinor of
the FM background described above, andN ðrÞ ensures the
normalization of ZskyrðrÞ. Because of the SU(4) symmetry
and scale invariance of the gradient term, C can be chosen
as an arbitrary spinor perpendicular to F, and also the size
of the Skyrmion obtained from λ0 is not fixed. These
parameters are fixed by the remaining much smaller
anisotropy terms and the Coulomb energy. While the
anisotropy terms favor small Skyrmions, the Coulomb
energy increases their size. For a quantitative analysis,
one has to take into account that for a constant λðrÞ ¼ λ0
the slow 1=r decay of the idealized SU(4) Skyrmion causes
a logarithmic divergence of the anisotropy energies Eq. (4).
To obtain the asymptotically exact Skyrmion energetics [2]
and to avoid this divergency, it is sufficient to parametrize
λðrÞ ¼ λ0 expð−r2=κλ20Þ. For each value of u⊥ and uz, we
therefore minimize δE ¼ E½ZskyrðrÞ� − E½ZðrÞ ¼ F� using
λ0, κ and four variational angles characterizing C [20].
Typical Skyrmion sizes obtained from this optimization are
on the order of 50–100 graphene lattice spacings for
realistic parameters. Notice that this is much larger than
shown in our figures, where we have used a smaller
Skyrmion size that corresponds to unphysical magnetic

fields (B ∼ 1000 T). However, the patterns are simpler to
visualize and can easily be upscaled to realistic sizes.
The resulting Skyrmion phases are shown in Fig. 2. Let

us first concentrate on the rather simple cases uz ≤ 0 or
u⊥ ≤ 0, where the background F is a product state of a spin
and a pseudospin FM. Either a spin or a pseudospin
Skyrmion can be formed to accommodate the Q ¼ 1
topological charge. Charge excitations of minimal energy
are mostly spin Skyrmions

Zspinðx; yÞ ¼ N ðrÞ−1ψP ⊗ ½ðxþ iyÞψS
↑ − λðrÞψS

↓�; ð7Þ

where the spinors ψS
↑ ¼ ð1; 0ÞT and ψS

↓ ¼ ð0; 1ÞT represent
the spin orientation and ψP is the (homogeneous) pseu-
dospin component, which is unaffected by a pure spin
texture. Generally, the spinors can be represented in terms
of the the four angles θS, ϕS and θP, ϕP that describe the
spin and pseudospin polarizations on their respective Bloch
spheres, with

ψ I ¼ ½cosðθI=2Þ; eiϕI sinðθI=2Þ�T;
χI ¼ ½−e−iϕI sinðθI=2Þ; cosðθI=2Þ�T; ð8Þ

for I ¼ S, P. The spinors ψS
↑ and ψS

↓ in Eq. (7) correspond

then to ψSðθS ¼ 0Þ and χSðθS ¼ 0Þ, respectively.
At uz ∼ u⊥ and uz, u⊥ ≤ 1=2, it becomes energetically

favorable to form pseudospin instead of spin Skyrmions,

Zpseudospinðx; yÞ ¼ N ðrÞ−1½ðxþ iyÞψP − λðrÞχP� ⊗ ψS
↑;

ð9Þ

where we have θP ¼ 0 and θP ¼ π=2 in ψP, χP for the
easy-axis pseudospin easy-plane pseudospin FM back-
ground, respectively. The pseudospin Skyrmion in an
easy-axis pseudospin FM background is represented as a
wrapping of the Bloch sphere in the inset of Fig. 1(a), as
well as in a lattice-resolved image Fig. 1(a), for a set of
parameters corresponding to point 3 in Fig. 2. While the
CP3 fields ZðrÞ only provide an envelope function in a
continuum description, the lattice-resolved patterns can be
obtained by a convolution with Gaussian functions repre-
senting the atomic wave functions on the lattice sites [20].
The electronic density is concentrated on the A sublattice at
the Skyrmion center r ¼ 0, whereas solely the B sublattice
is populated at r → ∞. The situation is more involved for a
pseudospin Skyrmion in an easy-plane pseudospin FM
[Fig. 1(b), for parameters corresponding to point 2 in
Fig. 2]. Since the pseudospin polarization is bound to the xy
plane at r ¼ 0 (gray arrow) and at r → ∞ (orange arrow),
both sublattices are equally populated there. However,
because the pseudospin polarization explores all points
of the Bloch sphere, the south pole at some point r1 and the
north pole at r2 ¼ −r1, this yields the double-core structure
in the lattice-resolved density plot Fig. 1(b), where solely
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the AðBÞsublattice is populated at r1ðr2Þ. This is reminis-
cent of bimerons in bilayer quantum Hall systems in GaAs
heterostructures [17,18,25].
The predominance of pseudospin Skyrmions at uz ∼ u⊥

is a consequence of a partial symmetry restoration at the
transition uz ¼ u⊥—the pseudospin component in Eq. (4)
is then proportional to uzP · P, and all pseudospin orienta-
tions are equally possible. A deformation of the pseudospin
texture thus becomes very soft, accompanied by no energy
cost, while the full spin polarization allows one to minimize
the Zeeman energy in Eq. (4). Similarly to spin Skyrmions
with a vanishing Zeeman gap [2], the size of the pseudospin
Skyrmion diverges, apart from a logarithmic correction, as
λ0=lB ∼ ðe2=ϵlBΔjuz − u⊥jÞ1=3, when approaching uz ¼
u⊥ along line A in Fig. 2, as one may understand from
a simple scaling analysis of the competing terms: while the
pseudospin symmetry-breaking in Eq. (4) scales as
∼λ20ju⊥ − uzj, the Coulomb interaction in Eq. (3) scales
as ∼e2=ϵλ0.
The probablymost exotic Skyrmion types are obtained for

uz, u⊥ ≥ 0 (yellow in Fig. 2), where spin-pseudospin
entanglement is energetically favored. A normalized CP3

spinor is described by six angles.Whereas the first four have
been introduced in Eq. (8), the remaining two (α, β) can be
viewed as angles on a third Bloch sphere that describes the
entanglement between spin and pseudospin [13]

Ψ ¼ cos
α

2
ψP ⊗ ψS þ eiβ sin

α

2
χP ⊗ χS: ð10Þ

This allows us to define the entanglement Skyrmion as an
SU(4) texture that fully covers the third (entanglement)
Bloch sphere; see the insets of Fig. 3, where the north and

south poles correspond to no entanglement. This Skyrmion
can be formed both in an unentangled background [orange
arrow pointing to the north pole in the inset of Fig. 3(a)] and
in a FMbackgroundwith nonzero entanglement; in the latter
case, the arrow representing the spinor F points away from
the poles [inset of Fig. 3(b)].
As we have pointed out above, the fingerprint of entan-

glement is a locally antiferromagnetic pattern, and entan-
glement is thus better visible in a lattice-resolved plot of the
spin magnetization rather than in plots of the different spin
densities (such as in Fig. 1). We therefore plot Sz ¼ ρ↑ − ρ↓
in Fig. 3 for the profile of entanglement Skyrmions. (The
separate patterns for ρ↑ and ρ↓ for the same Skyrmion types
can be found in Ref. [20].) Figure 3(a) corresponds to the
entanglement Skyrmion in an unentangled FM background
(point 6 in Fig. 2).We notice that also the Skyrmion center is
unentangled, with all electrons on a single sublattice. In
contrast to a pseudospin Skyrmion in an easy-axis pseudo-
spin FM background, it is maximally entangled at r ∼ λ0,
where one notices the above-mentioned antiferromagnetic
pattern, with all spin-up electrons on theB and all spin-down
electrons on the A sublattice. Figure 3(b), which represents
the entanglement Skyrmion in an entangledFMbackground
(point 7 in Fig. 2), shows again a double-core structure. The
two cores correspond to regions where ZðrÞ has no entan-
glement, while the entangled FM background is manifest in
the antiferromagnetic pattern. Finally, we notice that one
obtains again pseudospin Skyrmions at uz ∼ u⊥, uz, u⊥ >
1=2 (upper-right region in Fig. 2). However, to minimize the
symmetry-breaking terms, they are partially entangled, i.e.,
the polarization explores regions of the entanglement Bloch
sphere different from the poles. Hence, the modulus j cos αj
of the pseudospin polarization is decreased (“deflated
pseudospin Skyrmion” in Fig. 2), and the density contrast
would be reduced as compared to Fig. 1.
In conclusion, we have investigated different Skyrmion

types in graphene at ν ¼ �1. Apart from the usual spin
Skyrmion, the valley pseudospin analogue yields distinc-
tive charge patterns on the graphene lattice because valley
and sublattice degrees of freedom are identical in the n ¼ 0
LL. Graphene is therefore an ideal system to probe
Skyrmions with a valley pseudospin texture. This can, in
principle, be achieved in lattice-resolved STS in the energy
range corresponding to n ¼ 0. Since quantum-Hall
Skyrmions carry, in contrast to those in chiral magnets,
electric charge, their density can be controlled by a back
gate and one can thus achieve the limit of few isolated
Skyrmions. Most saliently, the large SU(4) symmetry of the
leading terms in the nonlinear sigma model yields exotic
entanglement Skyrmions stabilized for positive values of
the parameters uz and u⊥. These topological objects also
have a clear fingerprint in the form of antiferromagnetic
patterns, e.g., in spin-resolved STS, even if they are
manifestations of SU(4)-FM states. Our results show that
using STS with a magnetic tip, one can not only detect but

FIG. 3. Entanglement Skyrmions in an unentangled (a) and an
entangled (b) FM background. The two subfigures sketch the
lattice-resolved profiles of the z component of the spin magneti-
zation Sz in a color plot (blue for spin-up and red for spin-down
densities). Insets show the entanglement Bloch sphere spanned
by α and β [see Eq. (10)]. In each Bloch sphere, the orange and
gray arrows show the directions corresponding to the FM
background and to the Skyrmion center, respectively. Panels
(a) and (b) correspond to points 6 and 7 in Fig. 2, respectively.
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also identify the various Skyrmion types and analyze their
size as a function of B [2,20]. Notice that the relative weight
of the parameters can to some extent be tuned by the B field
and its orientation—while the Zeeman energy depends on
the total field, the pseudospin couplings only depend on its
perpendicular component [21,22]. If one, furthermore,
combines magnetic tips with different orientations of the
magnetization [26] one can actually map out locally 5 of
the 6 angles parametrizing the CP3 field [see Eq. (10)].
Only the β − ϕP combination cannot be measured directly.
While we have concentrated the discussion on Skyrmions
with topological charge Q ¼ 1, in topological sectors with
higher charge the Coulomb repulsion is likely to break up a
single charge Q into several charge-1 Skyrmions that are
eventually arranged into a lattice [7,27].

We acknowledge fruitful discussions with Markus
Morgenstern. Y. L. is funded by the China Scholarship
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