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We present an angle-resolved photoemission study of the electronic structure of the three-dimensional
pyrochlore iridate Nd2Ir2O7 through its magnetic metal-insulator transition. Our data reveal that metallic
Nd2Ir2O7 has a quadratic band, touching the Fermi level at the Γ point, similar to that of Pr2Ir2O7. The
Fermi node state is, therefore, a common feature of the metallic phase of the pyrochlore iridates. Upon
cooling below the transition temperature, this compound exhibits a gap opening with an energy shift of
quasiparticle peaks like a band gap insulator. The quasiparticle peaks are strongly suppressed, however,
with further decrease of temperature, and eventually vanish at the lowest temperature, leaving a
nondispersive flat band lacking long-lived electrons. We thereby identify a remarkable crossover from
Slater to Mott insulators with decreasing temperature. These observations explain the puzzling absence of
Weyl points in this material, despite its proximity to the zero temperature metal-insulator transition.
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The 5d iridium oxides (iridates), having comparable
scales for their kinetic energy, Coulomb interaction, and
spin-orbit coupling, provide an excellent platform for study-
ing new types of strongly correlated phenomena [1–11].
Amongst them, the pyrochlore iridates (Ln2Ir2O7, where Ln
is a lanthanide), endowed with frustrated geometry and cubic
symmetry, have a particularly fascinating phase diagram.
Pr2Ir2O7, with the largest Ln ion, is a metallic spin liquid
[12–14] and exhibits an anomalous Hall effect [15,16]. For
Ln ions with a smaller ionic radius, an antiferromagnetically
ordered insulating phase appears at low temperature.
Theoretically, topological band structures have been

ascribed to the Ln2Ir2O7 series [4,7,17–19]. The metallic
phase is predicted to exhibit quadratically, dispersing
conduction and valence bands touching at the Γ point
close to the Fermi level (EF) [20,21]. This structure has
been recently identified by angle-resolved photoemission
spectroscopy (ARPES) in Pr2Ir2O7 [22]. Theory predicts
that such a quadratic Fermi node state may be converted
into various topological states such as a topological
insulator or a Weyl semimetal by appropriate symmetry
breaking [4,7,17–19].
Antiferromagnetism in these materials is of the Ising

type, consisting of an “all-in–all-out” (AIAO) configuration
of Ir moments on alternating tetrahedra [23–26]. This
can be considered an “octupolar” spin order which breaks

time-reversal but preserves cubic symmetry, and does not
enlarge the unit cell [27]. The Ising nature implies two
types of domains, which have recently been shown, in
agreement with theoretical predictions [28], to be separated
by metallic domain walls [29,30], which have been imaged
by microwave impedance microscopy in the magnetic state
of Nd2Ir2O7 [26]. Early density functional studies predicted
the magnetic state to be a Weyl semimetal [7], and general
arguments imply that, if a quasiparticle picture applies
at low energy in the antiferromagnetic phase, and the
magnetic ordering is weak, it must exhibit Weyl points
and cannot have a true gap. Nevertheless, optical [31] and
transport [29] measurements indicate a gapped insulating
ground state for Nd2Ir2O7, despite its low antiferromag-
netic–metal-insulator (MI) transition temperature TMI ≈
30 K and proximity to metallic Pr2Ir2O7. This begs the
question of whether the weakness of the order, the
quasiparticle assumption, or both, break down in this
system. More generally, we seek to understand the influ-
ence of the MI transition on the conduction electrons.
In this Letter, we use ARPES to investigate the evolution

of the electronic structure through the MI transition in
Nd2Ir2O7, which is the most suitable member of the series
for such study because its low TMI minimizes thermal
broadening. Although the layered iridates have been
extensively studied by photoemission [2,32–38], ours is
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the first study across a MI transition in any iridate, since the
latter occurs only in the pyrochlores. Using high-quality
single crystals, we are able to directly measure both the
single particle excitations of the metallic and insulating
phases. Our data indicate that Nd2Ir2O7 displays a dramatic
Slater to Mott crossover with reducing temperature. This
implies that Weyl fermions, if they exist, may do so only in
a narrow region of temperature slightly below TMI, in which
the order is, indeed, weak and quasiparticles can survive.
Single crystals of Nd2Ir2O7 with ∼1 mm3 size were

grown with a flux method. The surface measured by
ARPES is the (111) plane. To get a clean surface, a typical
cleavage method was used: a top post glued on the crystal
surface is hit in situ to break the crystal. Flat, shiny portions
exposed on the cleaved surface are tiny, but still large
enough to be illuminated by the synchrotron beam
(∼100 μm in spot size). The ARPES experiments were
performed at BL7U of the UVSOR facility with a MBSA-1
analyzer (hν ¼ 8–18 eV) [39], BL28A of Photon Factory
in KEK with a Scienta SES2002 analyzer (hν¼39–60 eV),
and 13 beam line in BESSY-II at Helmholtz-Zentrum Berlin
with a Scienta R4000 analyzer (hν ¼ 50–60 eV). The
overall energy resolution in ARPES was set to ∼15 meV,
and the lowest achievable temperature was 1 K.
As previously reported, the transition temperature TMI in

Ln2Ir2O7 [40] is controlled by the Ln ion size [41], the
pressure [41,42], and the off stoichiometry [43]. We have
selected three pieces of Nd2Ir2O7 crystals with different
transition temperatures to investigate the variation of the
MI transition with small changes in stoichiometry
[29,43,44]. We identified, with an electron-probe micro-
analysis (EPMA), a slight deviation from stoichiometry
in the Ir/Nd ratio of approximately 1% and 2% for the
single crystals with zero field TMI of ∼25 K and ∼20 K,
respectively. The off stoichiometry of the crystals with the
maximum TMI of ∼35 K is below the threshold of detecting
in EPMA, i.e., no larger than that in theTMI ∼ 25 K samples.
Figure 1 shows the resistivity, ρðTÞ, of the crystals we

used for ARPES; note that we retrieved the crystal-piece
after the ARPES experiment and measured the resistivity of
exactly the same piece to properly compare the ARPES
and resistivity results. The temperature derivative of ρðTÞ,
dρðTÞ=dT, (inset panel) enables us to estimate the value of
TMI from the onset of its reduction. As marked by arrows,
different transition temperatures TMI of ∼19 K, ∼25 K, and
∼36 K were estimated for the three samples, which are,
thus, labeled as MI19K, MI25K, and MI36K for the rest of
the Letter.
In Fig. 2, we examine the band structure in the metallic

phase. Figure 2(c1) plots the typical ARPES spectra energy
distribution curves (EDCs) obtained at ðkx; kyÞ ¼ ð0; 0Þ
with low-energy photons ð9.0 eV ≤ hν ≤ 11.5 eVÞ corre-
sponding to kz (or kð111Þ) values in the first Brillouin zone
(BZ). Small but sharp quasiparticle peaks are observed for
all of the photon energies as marked by arrows in Fig. 2(c1).

We find that the quasiparticle peak approaches EF with
increasing photon energies and moves away again after
getting closest to it at hν ¼ 10.5 eV. In Fig. 2(c2), the EDCs
are symmetrized about EF to remove the effect of the Fermi
cutoff [22,45]. We found that the gapped spectra with two
peaks merge to one peak at 10.5 eV; thus, the band touching
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FIG. 1. Temperature dependence of the resistivity, ρðTÞ, for
Nd2Ir2O7 crystals (MI19K, MI25K, and MI36K) we used for
ARPES measurements. It is normalized to the intensity at
T ¼ 50 K. Inset panel plots the temperature derivative of the
resistivity, dρðTÞ=dT. The transition temperature (TMI) estimated
is marked by an arrow.
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FIG. 2. (a) Brillouin zone for Nd2Ir2O7. (b) Band dispersion
map crossing Γ, divided by the Fermi function at the measured
temperature (T ¼ 75 K). The arrow indicates the intensities
implying an expected conduction band. EDCs (T ¼ 15 K) at
ðkx; kyÞ ¼ ð0; 0Þ measured with low-energy photons (c1) and
high-energy photons (d1), corresponding to kð111Þs in the first and
third Brillouin zone, respectively. (c2), (d2) The same data as in
(c1) and (d1), respectively, but symmetrized about EF. Arrows
and bars mark peaks in the spectra.
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occurs in Nd2Ir2O7 at the same photon energy as in Pr2Ir2O7

[22]. To validate this further, we also used higher photon
energies reaching the third Brillouin zone [green circles in
Fig. 2(a)], and reproduced the Fermi node again at Γ
(hν ¼ 53 eV) as shown in Figs. 2(d1) and 2(d2) [45].
While ARPES is a technique for observing the occupied

band structure, one can visualize the unoccupied states
slightly above EF by raising the sample temperature.
Figure 2(b) demonstrates such an ARPES image along a
kx cut across Γ. Here, the intensities are divided by the
Fermi function at the measured temperature (T ¼ 75 K)
to properly reveal the spectra above EF. The spectrum
becomes broad due to the short lifetime characteristic of
strongly correlated systems at high temperatures, so it is not
possible to detect the quasiparticle peaks in the unoccupied
side. Nonetheless, significant intensities, indicative of the
theoretically predicted conduction band, are visible [a black
arrow in Fig. 2(b)].
Intriguingly, the band width of Nd2Ir2O7 is found to be

extremely narrow, of order ∼40 meV on the occupied side,
which is much less than expected from density functional
theory calculations. While a band narrowing is also
reported for the other iridates such as Na2IrO3 [32],
Sr2IrO4 [2], Sr3Ir2O7 [33], and SrIrO3 [34], it seems to
be comparable or even more significant in the pyrochlore
iridates, consistent with dynamical mean-field theory
calculations [46]. Furthermore, we detect a peak-dip-hump
structure in the spectra, as is often observed in strongly
correlated systems. These results are consistent with those
of Pr2 Ir2O7 [22]. The observations in both materials are
consistent with a picture of the metallic state as a highly
renormalized Fermi liquid [47].
We now turn to the MI transition. In Fig. 3, we examine

the temperature evolution of band dispersion through TMI,
measured along a momentum cut across Γ [a light blue
arrow in the inset of Fig. 3(c)]. Figures 3(a1) and 3(a2) plot
the dispersion maps for MI36K symmetrized about EF and
the second derivative of those [45]. Notably, the spectra
above and at TMI ∼ 36 K are virtually identical, showing
that there is no significant precursor of the MI transition.
As temperature is dropped below TMI, a gap opens at the
Fermi node. This variation is also seen in the ARPES
mapping at EF along a kx–ky sheet [red plane in the inset
of Fig. 3(c)]; the strong intensity at Γ coming from the
Fermi node [Fig. 3(d1), T ¼ 50 K] vanishes below TMI
[Fig. 3(d2), T ¼ 11 K]. The band dispersion, determined
from the peak or shoulder of the EDC [Fig. 3(c)] also
reflects the continuous opening of a gap below TMI. These
observations are consistent with a mean-field quasiparticle
dispersion, in which the gap is directly controlled by the
antiferromagnetic order parameter.
However, the EDCs, themselves, reflect strong correla-

tions. In Figs. 3(b1) and 3(b2), the spectra for T ¼ 47 K
and 1 K, corresponding to the images in Fig. 3(a1), are
plotted. The electronic structure in the metallic phase

[Fig. 3(b1)] consists of well-defined quasiparticle peaks
(red bars). In contrast, the insulating phase [Fig. 3(b2)]
shows a nondispersive flat band, and only the broad spectra
lacking long-lived electrons are detected, pointing to
correlation-induced Mott localization.
We investigate this further through the detailed variation

of spectral-shape at Γ. Figures 4(a1)–4(c1) show the
symmetrized EDCs from above to below TMI for the three
samples (MI19K, MI25K, and MI36K); the gap is reflected
in two split peaks (black arrows) below TMI. Please note
that the tracing of peak positions slightly underestimates
the “real” onset temperature of gap opening, especially in
3D materials with broadened spectra due to the imperfect
sample surface and kz broadening of ARPES. Nevertheless,
the persistence of quasiparticle peaks below but near TMI
and their shift with temperature is in accord with a mean-
field theory, and denote this as a “Slater picture” [48],
though in Nd2Ir2O7 there is no unit cell enlargement, as
envisioned in the original work of Slater [48], and observed
in NaOsO3 [49]. Enlargement is not necessary in Nd2Ir2O7

since the unit cell already contains four Ir atoms in the
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FIG. 3. (a1) Band dispersion map across Γ [hν ¼ 53 eV; a light
blue arrow in the inset of (c)] measured at various temperatures
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metallic state. Our use of the term “Slater” reflects the more
fundamental idea that the insulating behavior arises in a
mean-field-like way from an exchange field in magnetic
order, and follows other usage in the literature [50]. This
physics is fully consistent with the observation of coherent
muon spin precession, a signature of a long-range magnetic
order, just below TMI [24], and the recent discovery of an
insulator to metal transition driven by an external magnetic
field in Nd2Ir2O7 [29,44], revealing that the destruction
of AIAO magnetic order restores the metallic transport.
The gap behavior we observe here is distinctly different
from that in the planar iridate Na2IrO3, which remains
unchanged across the magnetic transition temperature, and
is, thus, categorized as a Mott-type insulator [32].

However, the data show that the quasiparticle peak
is significantly suppressed as temperature is further
decreased, and it totally disappears at the lowest temper-
ature, leaving only a broad spectrum. The abnormal
variation of the quasiparticle peak is also visible in the
raw EDCs [Fig. 4(d1)]. While a tiny peak survives in
MI19K [see Fig. 4(a1)], even at T ¼ 1 K, it is attributable
to small carrier doping in the insulating ground state
due to the off stoichiometry in the crystal [51]. This is
compatible with the previous reports that the electronic
state becomes less insulating with an increased off stoi-
chiometry [43,52], eventually turning metallic down to the
lowest temperature [53].
The peak suppression is examined in Figs. 4(a2)–4(d2)

in more detail, where the spectra of Figs. 4(a1)–4(d1)
normalized to the intensities around -0.3 eVare overlapped
with each other. The spectral weight at EF is gradually
depleted on cooling down to the lowest temperature. This
feature is more clearly demonstrated in Fig. 4(e) by plotting
a spectral loss near EF [Wloss, see the inset of Fig. 4(e)]
associated with the gap formation. The pseudogaplike
spectral loss quantifies the crossover from the Slater-like
mean field behavior near TMI to the Mott regime at the
lowest temperature. The fact that the gap [Fig. 4(f)] reaches
∼30–40 meV at low temperature (comparable to the optical
results [31]), thus, is as large as the measured bandwidth,
indicates the strong coupling limit, and may be responsible
for this crossover. We speculate that the enhancement of
exchange field due to Nd ordering at below ∼15 K [23]
may trigger the increased electron localization observed
in ARPES.
Theory predicts that theWeyl points may migrate from the

Γ point to the zone boundary and annihilate when the order
parameter becomes too large [6,18,21], which may explain
their absence in low temperature Nd2Ir2O7. One might,
therefore, contemplate their reappearance at intermediate
temperatures just below TMI, where the gap is smaller and
quasiparticles are still well defined. However, no indication
of Weyl points at intermediate temperatures was found in
the present ARPES measurements. Apart from the difficulty
of locating incommensurate temperature-dependent features
in ARPES, the progressive destruction of quasiparticles
we observed may be another reason for this. We leave a
dedicated search for Weyl points just below TMI, perhaps
using spin-resolved ARPES, for future work.
In conclusion, we carried out the first ARPES inves-

tigation of the MI transition of a three dimensional iridate.
We observe a quadratic Fermi node in the metallic state of
Nd2Ir2O7 very similar to that of Pr2Ir2O7. Upon lowering
temperature below TMI ∼ 30 K, we found a drastic varia-
tion in the spectral shape, with a gradual opening of a gap
and accompanying suppression of the quasiparticle peak.
At the lowest achievable temperature of 1 K, quasiparticles
are completely suppressed and a dispersionless spectral
edge is observed. The results indicate a crossover from a
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Slater-like mean-field effective band insulator just below
TMI to a Mott-like insulator with localized electrons at the
lowest temperature.
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