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We study a system of three photons in an atomic medium coupled to Rydberg states near the conditions
of electromagnetically induced transparency. Based on the analytical analysis of the microscopic set of
equations in the far-detuned regime, the effective three-body interaction for these Rydberg polaritons is
derived. For slow light polaritons, we find a strong three-body repulsion with the remarkable property that
three polaritons can become essentially noninteracting at short distances. This analysis allows us to derive
the influence of the three-body repulsion on bound states and correlation functions of photons propagating
through a one-dimensional atomic cloud.
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Quantum systems consisting of a few interacting bodies
are a central point of attention in different fields of physics
[1,2]. Despite their apparent simplicity, in general few-body
problems are not analytically solvable and possess fasci-
nating emergent properties. A prominent example is the
existence of universal three-body bound states for bosons
with pairwise short-range interactions discovered by
Efimov [3]. In addition, three-body forces can have strong
influence on the properties of quantum many-body systems
such as nuclear systems [4], neutron stars [5], and fractional
quantum Hall states [6]. It is thus natural to look for
systems in which three-body interactions could be con-
trolled for the purpose of quantum simulations. Several
proposals have been made in this context, mainly utilizing
ultracold atoms and molecules [7–11]. In this Letter, we
demonstrate that strong three-body interactions naturally
appear between Rydberg slow light polaritons.
Rydberg slow light polaritons have recently emerged as a

promising approach to engineer a strong interaction
between photons [12–16]. It is based on the combination
of electromagnetically induced transparency (EIT) [17] and
the strong interaction between Rydberg states. Under EIT
conditions, single photons propagate in the medium as dark
polaritons with reduced velocity and significant admixture
of the Rydberg state [18]. Then, the strong interactions
between Rydberg atoms that give rise to the blockade effect
[19,20] can be mapped onto polaritons, resulting in
effective interaction potential [13,21,22]. The sign,
strength, and range of the interactions can be tuned by
varying the Rabi frequencies and detuning of the lasers as
well as the principal quantum number of the atoms. The
Rydberg EIT scheme has been used to study quantum
nonlinear optics at the single photon level [14,16,23–27]
and can be applied to realize strongly correlated many-body
states of light [28–34]. However, the analysis of these
systems has so far been restricted to models based on the
effective two-body interaction between the polaritons.
In this Letter, we make an essential step towards

studying strongly interacting many-body systems made

of slow light polaritons. Basing on the microscopic set of
equations describing photons in an EIT medium in the far-
detuned regime, we analytically derive the interaction
potential for a three-body system and demonstrate the
appearance of a strong three-body interaction potential in
addition to the previously discussed effective two-body
potential. We find that especially in the experimentally
interesting regime of slow light polaritons, the influence of
the three-body interaction can be equally important as the
contribution from the effective two-body interaction. This
strongly influences the properties of three-body bound
states as well as the correlation function of three photons
propagating through a realistic one-dimensional setup,
allowing for simulation of exotic many-body models and
creation of strongly correlated multiphoton states.
We start with the microscopic derivation of the three-

body interaction potential between the slow light polaritons.
The atomic medium consists of three-level atoms with jGi
being the ground state, and an intermediate state jPi coupled
to a Rydberg level jSi by a control laser with Rabi frequency
Ω and detuning Δ; the latter includes the decay of the
intermediate level by Δ ¼ δ − iγ; see Fig. 1. The probe
photons are tuned near the EIT condition and therefore
photons entering the atomic medium are converted into
slow light polaritons with a large admixture of the Rydberg
state. The effective two-polariton interaction potential
has been derived by several different approaches before
[13,16,21,33]. The conceptually simplest approach is based
on the analysis for a single photonic mode realized in a
single mode cavity: the stationary Schrödinger equation
reduces for two photons in the cavity to a set of coupled
equations for different components of the wave function.
Solving these equations [33,35] determines the energy shift
in the presence of two photons in the cavity, and relates
directly to the two-polariton interaction potential.
For large jΔj ≫ Ω, which will be assumed throughout

this Letter, the intermediate level can be adiabatically
eliminated. The effective interaction potential takes the
form [13,16,21,33]
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Vð2Þ
eff ðrÞ ¼ α2

VðrÞ
1 − χVðrÞ ; ð1Þ

with χ ¼ Δ=ð2ℏΩ2Þ and the van der Waals interaction
VðrÞ ¼ C6=jrj6 between the Rydberg states. Furthermore,
α ¼ g2=ðg2 þ Ω2Þ denotes the probability to find a single
polariton in the Rydberg level with g being the collective
atom-photon coupling. We note that the interactions are
saturated at short distances as a result of the Rydberg
blockade mechanism. The characteristic length scale for
this process, called the blockade radius, is defined
as ξ ¼ jC6χj1=6.
One can expect that for more than two photons higher

order terms in α can arise, which then correspond to
effective many-body interactions. Here, we are interested
in the three-body term. The derivation is again most
conveniently performed in a single mode cavity with three
photons present in the system, and expressing the system in
terms of the stationary Schrödinger equation for the
photons and the atomic matter. The analysis is presented
in detail in the Supplemental Material [35]. The important
step in the derivation is the assumption that the size of the
photonic mode is much larger than the blockade radius,
which is equivalent to the condition of low energies. Then,
the effective interaction can be read off from the analytical
result for the small energy shift for the photons in the cavity
and decomposed into a sum of two-body and three-body
contributions. The pure three-body interaction term takes
the form

Vð3Þ
eff ðx1;x2;x3Þ¼α3

X
i<j

V3ðx1;x2;x3Þ−Vðxi−xjÞ
1−χVðxi−xjÞ

; ð2Þ

with

V3ðx1;x2;x3Þ ¼
P

i<jVðxi − xjÞ
3 − 2χ

P
i<jVðxi − xjÞ

: ð3Þ

It immediately follows that the three-body interaction
exhibits opposed behavior at short distances with respect

to the two-body one: while Vð2Þ
eff ðrÞ saturates at −α2=χ, the

three-body interaction exhibits the opposite sign and
saturates at þ3α3=χ. As expected, the three-body inter-
action is suppressed in α for weak coupling of the photons
α ≪ 1, but exhibits an equal strength as the effective two-
body interaction for slow light polaritons with g ≫ Ω.
From now on, we will measure lengths in units of the

blockade radius ξ and energies in units of 1=jχj ¼
2ℏΩ2=jΔj. While our derivation is general and can be
applied regardless of the geometry of the system, the
influence of the three-body interaction is most conveniently
studied for a one-dimensional setup on which we will
now focus. By introducing the Jacobi coordinates defined
as R ¼ ðx1 þ x2 þ x3Þ=

ffiffiffi
3

p
ξ, η ¼ ðx1 − x2Þ=

ffiffiffi
2

p
ξ, and

ζ ¼ ffiffiffiffiffiffiffiffi
2=3

p ½ðx1 þ x2Þ=2 − x3�=ξ, the center of mass R
disappears from Eq. (2), and, therefore, the three-body
interaction depends only on the two relative coordinates η
and ζ as shown in Fig. 1. We note that the sixfold symmetry
which is naturally present for three particles interacting via
two-body forces is preserved by our three-body term. It is
remarkable that the saturation of the full interaction
potential at short distances takes the from −3α3Ω2=g2χ,
and vanishes in the limit of slow light g ≫ Ω with α ¼ 1.
Then, dissipative losses from the decay of the intermediate
jPi level, which are accounted for by complex value of Δ,
are suppressed. A simple explanation of this behavior can
be obtained by the following argument: at short distances,
the Rydberg blockade enables only a single Rydberg
excitation. Then, the value of the effective potential at
short distances for n polaritons is determined by the
probability to find one Rydberg excitation and (n − 1)
photons, i.e., ng2Ω2ðn−1Þ=ðg2 þ Ω2Þn multiplied by the
dispersive energy shift for the n − 1 photons due to their
coupling to the jPi level. The latter reduces to
−ðn − 1Þg2ℏ=Δ. This simple estimation provides indeed
the correct saturation for two and three polaritons.
We can now extend the analysis to the full propagation

problem of polaritons in a one-dimensional setup as studied
experimentally in Ref. [16]. For simplicity, we focus on the
coherent dynamics and neglect the losses from spontaneous

FIG. 1. (a) Level diagram for the Rydberg EIT setup. (b) The two-body contribution
P

i<jV
ð2Þ
eff ðxi − xjÞ to the total interaction

potential U in Jacobi coordinates. Energies are expressed in units of 1=jχj, while lengths are expressed in units of the blockade radius ξ.
For illustration, we choose a real valued Δ with C6Δ < 0, and set α ¼ 1. (c) The pure three-body interaction Vð3Þ

eff . (d) Total interaction
potential U with three-body and two-body contributions, which demonstrates that in this regime three polaritons become noninteracting
at short distances.
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emission, i.e., γ ¼ 0, in the regime C6Δ < 0. The effective
low energy Hamiltonian for the polaritons reduces to H ¼
Hkin þ U with the interaction U including the two-body
interaction as well as the three-body interaction

Uðx1; x2; x3Þ ¼
X
i<j

Vð2Þ
eff ðxi − xjÞ þ Vð3Þ

eff ðx1; x2; x3Þ: ð4Þ

In turn, the kinetic energy Hkin of the polaritons is
well accounted for by the expansion of the dispersion
relation at low momenta providing the slow light velocity
vg ¼ Ω2=ðg2 þΩ2Þc and a mass term [13,21,28]

Hkin ¼
X3
j¼1

�
iℏvg∂xj þ

ℏ2

2m
∂2
xj

�
ð5Þ

with m ¼ ℏðg2 þΩ2Þ3=ð2c2g2ΔΩ2Þ. It is important to
stress that the only approximation in deriving the
Hamiltonian H is the restriction to the low energy regime,
i.e., jEjj < ℏΩ2=jΔj with Ej the energy of the polaritons.
We will now analyze how the short-range repulsion

affects the properties of the system, and first focus on the
three-body bound state. In Jacobi coordinates, the center-of-
mass motion can be separated, and the Hamiltonian describ-
ing the relative motion of the polaritons reduces to a two-
dimensional problem and can be conveniently written as

Hrel ¼ −
∂2

∂η2 −
∂2

∂ζ2 þ λ ~Uðη; ζÞ; ð6Þ

with ~U ¼ χU=α2 and λ ¼ jα2mξ2=ðℏ2χÞj. Note, that in
the far-detuned regime, the two-polariton potential is
always attractive and its strength is determined by the
dimensionless parameter λ, which can also be written as
λ ¼ κ2ξðΩ2 þ g2Þ=g2 with κξ ¼ ξg2=jΔjc the off-resonant
optical thickness per blockade radius. Note, that for weak
interactions with λ ≪ 1, the two-body potential is well
described by an attractive δ-function potential, while for
increasing interactions with λ > 1 the bound state energies
become comparable to ℏΩ2=Δ, and we start to leave the low
energy regime. An exact solution for the bound states of a
three-body system with pairwise δ-function interactions
shows a single three-body bound state with energy −4B,
where B is the binding energy of the two-body bound state
[38]. In our case, the repulsive three-body interaction will
increase the energy of this three-body bound state.
In order to study the properties of the full system, we first

make use of the adiabatic potentials method, which has
proven successful for pairwise delta interactions [39,40].
To this end, we introduce the hyperspherical coordinates ρ,
θ with η ¼ ρ sin θ, ζ ¼ ρ cos θ. We then expand the
wave function into partial waves ψ ¼ P

kðΦkðρÞ=ffiffiffi
ρ

p ÞðexpðikθÞ= ffiffiffiffiffiffi
2π

p Þ, which provides a set of coupled
radial equations. Diagonalization of these equations at
fixed position provides the adiabatic potentials; note that
each channel is still dominated by the corresponding partial

wave, and therefore we keep the index k. Within the
adiabatic approximation, we can neglect the coupling terms
between the channels [35]. This results in a set of one-
dimensional equations of the form

�
−

d2

dρ2
þ k2 − 1=4

ρ2
þ ΔkðρÞ

�
ΦkðρÞ ¼ EΦkðρÞ; ð7Þ

where Δk is the effective interaction in channel k, equiv-
alent to total adiabatic potential curve Λk ¼ Δk þ
ðk2 − 1=4Þ=ρ2; see Fig. 2. Only the lowest (k ¼ 0) channel
is attractive and can support bound states. Furthermore, the
lowest curve at large ρ approaches the energy of the two-
body bound state; the latter behavior is well understood, as
the atom-dimer continuum should start exactly at the energy
of this bound state. The impact of the three-body forces
becomes more clear when the angular term is subtracted:
the lowest effective potential is plotted in the right panel of
Fig. 2 for different values of α but fixed interaction strength
λ ¼ 0.1. In the absence of three-body repulsion the poten-
tial looks similar to the two-body interaction, with char-
acteristic short-range saturation. When the repulsion is
turned on, the short distance behavior changes. However,
the potential exhibits an attractive well for any α ∈ ½0; 1�
regardless of the value of λ, so a three-body bound state is
always expected to exist. Its properties, however, may be
strongly dependent on α.
Further insight into the problem can be gained by direct

numerical diagonalization of Eq. (6) [35]. We indeed find
the three-body bound state to be the ground state of the
system for any value of the parameters, in agreement with
the adiabatic approach. In Fig. 3, we show the dependence
of the energy Eð3Þ for the three-body bound state on λ for
different values of α; it is convenient to show the ratio
between the three-body bound state energy Eð3Þ and the
corresponding two-body bound state energy Eð2Þ. For
α ¼ 0, we recover the analytical result of Ref. [38] in
the limit of weak interactions. Three-body repulsion not
only shifts the bound state energy, but also provides a
significant broadening of the wave function as well as the
appearance of characteristic dip at the center; see the inset
of Fig. 3.

FIG. 2. (a) Adiabatic curves ΛkðρÞ for α ¼ 1 and λ ¼ 0.1. Note,
that only partial waves with a difference in angular momentum by
a multiple of 6 are coupled to each other. (b) Lowest effective
adiabatic potential Δ0ðρÞ for different values of α and λ ¼ 0.1.
The horizontal thin dashed line denotes the energy of the two-
body bound state.
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Experimental implications.— We now discuss the detec-
tion and the impact of three-body interactions in experi-
ments with photons propagating through a 1Dmedium. In a
realistic situation the photons are injected into the medium
in a coherent state with low mean number of photons and
the detection takes place after they leave the medium.
Time-resolved measurements give access to the intensity
correlation functions. Here we are interested in the third
order correlations, which should contain information about
the three-body bound state. In the following, we choose
parameters, which are close to the experimental parameters
achieved in Ref. [16]: the condition of slow light with
g ≫ Ω implies α ≈ 1, while the experimentally observed
interaction strength expressed in our parameters correspond
to λ ≈ 0.1.
Solving the full propagation problem for three photons

is in general extremely challenging. Therefore, we will
here perform a simplified analysis, which has previously
turned out to be very successful for two photons [16]. It is
based on the approximation that the atomic medium is a
homogeneous slab and that the three-photon component
of the wave function obeys the boundary condition
ψðR ¼ 0; η; ζÞ ¼ κ3, where κ is the amplitude of the
coherent state. Then we have gð3ÞðR ¼ 0; η; ζÞ ¼ 1. This
can be decomposed into contributions from bound and
scattering states. During the propagation different eigen-
states pick up different phases, which leads to formation of
a characteristic pattern in the correlation function. For
second order correlations, the contribution from the bound
state becomes clearly visible [16]. To extract information
about pure three-body correlations, we note that when one
particle is separated from the other two, gð3Þ approaches

the value of gð2Þ. It is thus natural to study the connected
part of the correlation function ~gð3Þ instead of gð3Þ, which is
defined as

~gð3Þðx1;x2;x3Þ¼2þgð3Þðx1;x2;x3Þ−
X
i<j

gð2Þðxi;xjÞ: ð8Þ

The connected correlation function ~gð3Þðx1; x2; x3Þ obeys
the property that it approaches zero at large particle
separation. The numerical determination of ~gð3Þ is then
straightforward using the full set of eigenstates of Eq. (6) as
a basis set: first, we expand the incoming wave function in
this basis; then, each eigenstate acquires a phase during the
propagation through the medium proportional to its energy
and the distance R. This eventually determines the outgoing
wave function and we can compute ~gð3Þðx1; x2; x3Þ from the
final state. The result for ~gð3Þ is shown in Fig. 4 after
propagation distance of 20ξ in the medium. The central
peak in the correlation functions originates from the bound
states and exhibits a stable and characteristic shape; in
analogy to the two-body correlation function gð2Þ [16]. We
clearly see that for α ¼ 1 the width of the peak is
significantly greater as compared to the absence of
three-body interactions, and its shape follows the three-
body bound state wave function. This implies that meas-
urement of ~gð3Þ should indeed give access to the structure of
three-body bound states.
In conclusion, we have shown that Rydberg polaritons

naturally exhibit three-body interactions, which strongly
affects their few-body properties in the regime of slow light.
The short-range three-body repulsion modifies the energy
and shape of the three-body bound states of polaritons
propagating through a one-dimensional channel, which can
be detected in experiments by measuring third-order
correlations. It is a remarkable property that in the regime
of slow light with α ≈ 1, the total interactions vanish at
short distances. This creates a region in which three closely
lying photons are protected from dissipation. We therefore
expect that the transmission in the dissipative regime for
three photons is strongly enhanced.

FIG. 3. Binding energy Eð3Þ of the three-body bound state in
units of the corresponding two-body enegy Eð2Þ as a function
of λ. The dotted (red) line corresponds to the situation of pure
two-body interaction, while modifications due to the three-
body interaction are shown for weak (α ¼ 0.1, blue dashed
line) and strong (α ¼ 1, black solid line) three-body repulsion.
The insets show the wave function of the bound state for λ ¼ 1
for two cases.

FIG. 4. Central peak of the connected part of third-order
correlation function ~gð3Þ for λ ¼ 0.1 and a length of the media
R ¼ 20ξ. (a) In the absence of the three-body interaction, ~gð3Þ
shows the characteristic feature of the three-body bound state
determined by a δ-function interaction. (b) The full behavior
including the strong three-body interaction with α ¼ 1, demon-
strating the characteristic behavior of the three-body bound state
in this regime. Note, that ~gð3Þ approaches zero for large distances.
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Our results are independent of the dimensionality of the
system and can also be applied to multimode optical
cavities. This paves the way to use polaritons for simulating
exotic few- and many-body models. Especially, it is
possible to quench the s-wave scattering length by tuning
the parameter λ to control the number of bound states in the
attractive two-body potential; in analogy to the 1D situation
[21]. Then, the remaining interaction is dominated by the
repulsive three-body interaction, enabling realization of
purely three-body interacting systems of photons in arbi-
trary dimensions, leading to interesting quantum states of
matter; the most prominent example being the Pfaffian
states [6]. Other potential applications include creating
correlated photonic states by propagating multiphoton
pulses through Rydberg EIT medium.

We acknowledge fruitful discussions with Maxim
Efremov. This work was supported by the European
Union under the ERC consolidator grant SIRPOL (Grant
No. 681208), the Foundation for Polish Science within
the START program, the Alexander von Humboldt
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Note added.—Recently, we became aware of related work
by Gullans et al. [41].

[1] W. Glöckle, The Quantum Mechanical Few-Body Problem
(Springer Science & Business Media, New York, 2012).

[2] N. T. Zinner, Few-Body Syst. 55, 599 (2014).
[3] V. Efimov, Phys. Lett. B 33, 563 (1970).
[4] G. Brown and A. Green, Nucl. Phys. A137, 1 (1969).
[5] A.W. Steiner and S. Gandolfi, Phys. Rev. Lett. 108, 081102

(2012).
[6] M. Greiter, X.-G. Wen, and F. Wilczek, Phys. Rev. Lett. 66,

3205 (1991).
[7] H. Büchler, A. Micheli, and P. Zoller, Nat. Phys. 3, 726

(2007).
[8] P. Johnson, E. Tiesinga, J. Porto, and C. Williams, New J.

Phys. 11, 093022 (2009).
[9] A. J. Daley, J. M. Taylor, S. Diehl, M. Baranov, and P.

Zoller, Phys. Rev. Lett. 102, 040402 (2009).
[10] L. Mazza, M. Rizzi, M. Lewenstein, and J. I. Cirac,

Phys. Rev. A 82, 043629 (2010).
[11] D. S. Petrov, Phys. Rev. Lett. 112, 103201 (2014).
[12] I. Friedler, D. Petrosyan, M. Fleischhauer, and G. Kurizki,

Phys. Rev. A 72, 043803 (2005).
[13] A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and

M. D. Lukin, Phys. Rev. Lett. 107, 133602 (2011).
[14] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth,

A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić,
Nature (London) 488, 57 (2012).

[15] V. Parigi, E. Bimbard, J. Stanojevic, A. J. Hilliard, F.
Nogrette, R. Tualle-Brouri, A. Ourjoumtsev, and P.
Grangier, Phys. Rev. Lett. 109, 233602 (2012).

[16] O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov,
M. D. Lukin, and V. Vuletić, Nature (London) 502, 71
(2013).

[17] M. Fleischhauer, A. Imamoglu, and J. P. Marangos,
Rev. Mod. Phys. 77, 633 (2005).

[18] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094
(2000).

[19] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D.
Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901
(2001).

[20] R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher,
R. Löw, L. Santos, and T. Pfau, Phys. Rev. Lett. 99, 163601
(2007).

[21] P. Bienias, S. Choi, O. Firstenberg, M. Maghrebi, M.
Gullans, M. D. Lukin, A. V. Gorshkov, and H. P. Büchler,
Phys. Rev. A 90, 053804 (2014).

[22] M. F. Maghrebi, M. Gullans, P. Bienias, S. Choi, I. Martin,
O. Firstenberg, M. D. Lukin, H. P. Büchler, and A. V.
Gorshkov, Phys. Rev. Lett. 115, 123601 (2015).

[23] Y. Dudin and A. Kuzmich, Science 336, 887 (2012).
[24] D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche,

J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A.
Jones, and C. S. Adams, Phys. Rev. Lett. 110, 103001
(2013).

[25] C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de
Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and
M. Weidemüller, Phys. Rev. Lett. 110, 203601 (2013).

[26] H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S.
Hofferberth, Phys. Rev. Lett. 113, 053601 (2014).

[27] D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe,
Phys. Rev. Lett. 113, 053602 (2014).

[28] J. Otterbach, M. Moos, D. Muth, and M. Fleischhauer,
Phys. Rev. Lett. 111, 113001 (2013).

[29] A. V. Gorshkov, R. Nath, and T. Pohl, Phys. Rev. Lett. 110,
153601 (2013).

[30] M. F. Maghrebi, N. Y. Yao, M. Hafezi, T. Pohl, O.
Firstenberg, and A. V. Gorshkov, Phys. Rev. A 91,
033838 (2015).

[31] M. Moos, M. Höning, R. Unanyan, and M. Fleischhauer,
Phys. Rev. A 92, 053846 (2015).

[32] T. Weber, M. Höning, T. Niederprüm, T. Manthey, O.
Thomas, V. Guarrera, M. Fleischhauer, G. Barontini, and
H. Ott, Nat. Phys. 11, 157 (2015).

[33] A. Sommer, H. P. Büchler, and J. Simon, arXiv:1506.00341.
[34] J. Ningyuan, A. Georgakopoulos, A. Ryou, N. Schine, A.

Sommer, and J. Simon, Phys. Rev. A 93, 041802(R)
(2016).

[35] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.117.053601, which
contains additional Refs. [36,37], for a detailed derivation
of the three-body interaction, description of the adiabatic
approach, and numerical details.

[36] J. P. D’Incao and B. D. Esry, Phys. Rev. A 90, 042707
(2014).

[37] L. N. Trefethen, Spectral Methods in MATLAB (Siam,
Philadelphia, 2000), Vol. 10.

[38] J. B. McGuire, J. Math. Phys. (N.Y.) 5, 622 (1964).
[39] W. G. Gibson, S. Y. Larsen, and J. Popiel, Phys. Rev. A 35,

4919 (1987).
[40] N. P. Mehta and J. R. Shepard, Phys. Rev. A 72, 032728

(2005).
[41] M. J. Gullans, Y. Wang, J. D. Thompson, Q-Y. Liang, V.

Vuletic, M. D. Lukin, and A. V. Gorshkov, arXiv:
1605.05651.

PRL 117, 053601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
29 JULY 2016

053601-5

http://dx.doi.org/10.1007/s00601-014-0802-x
http://dx.doi.org/10.1016/0370-2693(70)90349-7
http://dx.doi.org/10.1016/0375-9474(69)90068-2
http://dx.doi.org/10.1103/PhysRevLett.108.081102
http://dx.doi.org/10.1103/PhysRevLett.108.081102
http://dx.doi.org/10.1103/PhysRevLett.66.3205
http://dx.doi.org/10.1103/PhysRevLett.66.3205
http://dx.doi.org/10.1038/nphys678
http://dx.doi.org/10.1038/nphys678
http://dx.doi.org/10.1088/1367-2630/11/9/093022
http://dx.doi.org/10.1088/1367-2630/11/9/093022
http://dx.doi.org/10.1103/PhysRevLett.102.040402
http://dx.doi.org/10.1103/PhysRevA.82.043629
http://dx.doi.org/10.1103/PhysRevLett.112.103201
http://dx.doi.org/10.1103/PhysRevA.72.043803
http://dx.doi.org/10.1103/PhysRevLett.107.133602
http://dx.doi.org/10.1038/nature11361
http://dx.doi.org/10.1103/PhysRevLett.109.233602
http://dx.doi.org/10.1038/nature12512
http://dx.doi.org/10.1038/nature12512
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/PhysRevLett.84.5094
http://dx.doi.org/10.1103/PhysRevLett.84.5094
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/PhysRevLett.99.163601
http://dx.doi.org/10.1103/PhysRevLett.99.163601
http://dx.doi.org/10.1103/PhysRevA.90.053804
http://dx.doi.org/10.1103/PhysRevLett.115.123601
http://dx.doi.org/10.1126/science.1217901
http://dx.doi.org/10.1103/PhysRevLett.110.103001
http://dx.doi.org/10.1103/PhysRevLett.110.103001
http://dx.doi.org/10.1103/PhysRevLett.110.203601
http://dx.doi.org/10.1103/PhysRevLett.113.053601
http://dx.doi.org/10.1103/PhysRevLett.113.053602
http://dx.doi.org/10.1103/PhysRevLett.111.113001
http://dx.doi.org/10.1103/PhysRevLett.110.153601
http://dx.doi.org/10.1103/PhysRevLett.110.153601
http://dx.doi.org/10.1103/PhysRevA.91.033838
http://dx.doi.org/10.1103/PhysRevA.91.033838
http://dx.doi.org/10.1103/PhysRevA.92.053846
http://dx.doi.org/10.1038/nphys3214
http://arXiv.org/abs/1506.00341
http://dx.doi.org/10.1103/PhysRevA.93.041802
http://dx.doi.org/10.1103/PhysRevA.93.041802
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.053601
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.053601
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.053601
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.053601
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.053601
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.053601
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.053601
http://dx.doi.org/10.1103/PhysRevA.90.042707
http://dx.doi.org/10.1103/PhysRevA.90.042707
http://dx.doi.org/10.1063/1.1704156
http://dx.doi.org/10.1103/PhysRevA.35.4919
http://dx.doi.org/10.1103/PhysRevA.35.4919
http://dx.doi.org/10.1103/PhysRevA.72.032728
http://dx.doi.org/10.1103/PhysRevA.72.032728
http://arXiv.org/abs/1605.05651
http://arXiv.org/abs/1605.05651

