
Topological Superconductivity on the Surface of Fe-Based Superconductors

Gang Xu, Biao Lian, Peizhe Tang, Xiao-Liang Qi,* and Shou-Cheng Zhang†

Department of Physics, McCullough Building, Stanford University, Stanford, California 94305-4045, USA
(Received 9 December 2015; revised manuscript received 19 May 2016; published 18 July 2016)

As one of the simplest systems for realizing Majorana fermions, the topological superconductor
plays an important role in both condensed matter physics and quantum computations. Based on ab initio
calculations and the analysis of an effective 8-band model with superconducting pairing, we demonstrate
that the three-dimensional extended s-wave Fe-based superconductors such as Fe1þySe0.5Te0.5 have a
metallic topologically nontrivial band structure, and exhibit a normal-topological-normal superconduc-
tivity phase transition on the (001) surface by tuning the bulk carrier doping level. In the topological
superconductivity (TSC) phase, a Majorana zero mode is trapped at the end of a magnetic vortex line. We
further show that the surface TSC phase only exists up to a certain bulk pairing gap, and there is a normal-
topological phase transition driven by the temperature, which has not been discussed before. These results
pave an effective way to realize the TSC and Majorana fermions in a large class of superconductors.
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Topological superconductivity (TSC) is known for its
ability to host Majorana fermions and implement topologi-
cal quantum computations [1–3]. As one of the most
intriguing topics in today’s physics research, lots of
theoretical proposals have been raised for realization of
the Majorana zero modes (MZMs) [4–22]. In particular,
based on the topological insulator (TI), Fu and Kane
proposed that a TSC can be achieved on the TI surface
in proximity to the simplest s-wave superconductors, where
the Dirac cone type surface states (SSs) are forced to favor a
px þ ipy pairing [6]. To realize such a surface TSC, a lot
of effort has been devoted to carrier doped TIs such as
CuxBi2Se3 [23–25] and the superconductor-TI heterostruc-
tures [26–28], in which some features suggesting the
existence of MZMs have been observed but direct evidence
is still absent. However, there is little investigation along
the other way of thinking, namely, looking for the intrinsic
s-wave superconductors that possess a topologically non-
trivial band structure and support the Dirac cone type SSs.
Recently, it was found by density functional theory

(DFT) calculations and confirmed by ARPES observations
that superconducting (SC) FeSe0.5Te0.5 (FST) and LiFeAs
possess topologically nontrivial band structures due to a
band inversion in the Γ − Z direction [29]. At high temper-
atures, FST is a topologically nontrivial metal with a single
Dirac cone on the surface. Below the SC transition temper-
ature (Tc ¼ 14.5 K) [30,31], according to Fu and Kane’s
argument, the surface electrons in the Dirac cone have a
chance to pair into a p-wave TSC due to the proximity
effect of the bulk superconductivity. However, unlike
Fu and Kane’s model where the surface Dirac cone is in
the TI band gap, the SSs in FST are buried in the metallic
bulk bands. Therefore, whether the Cooper pairing of the
SSs can form a TSC is an unknown question. In this Letter,
based on the DFT calculations and the analysis of an

effective 8-band model with the SC pairing at the Γ and
Z points, we clearly answer this question and predict a
normal-topological-normal superconductivity phase transi-
tion on the (001) surface of a class of the extended s-wave
superconductors such as FST, which possess topological
nontrivial band structures around the Fermi level. In a
proper chemical doping interval that can be easily achieved
experimentally, the MZMs can be observed at the ends
of a magnetic vortex line in FST. Compared to most
previous proposals of TSC in heterostructures [6–19],
TSC is realized within one material here, which at least
leads to two advantages: (i) The complicated interactions
and unpredictability at the interfaces are avoided, and the
sample preparation and quality control becomes much
easier in experiments; (ii) a strong proximity effect between
the bulk SC and the SSs is ensured. Our results suggest an
efficient way to realize the TSC and Majorana fermions
on the surface of such three-dimensional superconductors,
which may have potential applications in the quantum
computations.
Experimentally, FST is synthesized within the inversion

symmetric space group P4=nmm [30–34], as shown in
Fig. 1(a), where each layer of Fe atoms is sandwiched
by two layers of Se (Te) atoms forming one unit cell and
stacking along the z direction. The first Brillouin zone (BZ)
of such a system is shown in Fig. 1(c), where there are
eight time-reversal-invariant points (TRIPs), Γð0; 0; 0Þ,
Mðπ; π; 0Þ, Zð0; 0; πÞ, Aðπ; π; πÞ, two Rðπ; 0; πÞ, and two
Xðπ; 0; 0Þ. In the inversion symmetric system, the parity
products of the TRIPs determine the Z2 topological index
of the system [35,36]. Two equivalent X points and two
equivalent R points always yield a trivial parity product.
Besides, due to the negligible dispersion along the M − A
direction in the Fe-based superconductors, the parity
product of the M point and A point is also trivial.

PRL 117, 047001 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
22 JULY 2016

0031-9007=16=117(4)=047001(5) 047001-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.117.047001
http://dx.doi.org/10.1103/PhysRevLett.117.047001
http://dx.doi.org/10.1103/PhysRevLett.117.047001
http://dx.doi.org/10.1103/PhysRevLett.117.047001


Therefore, the parities of the occupied states at the Γ and Z
points are the key to determine the topology of the
electronic bands in FST (and any other Fe-based super-
conductors with P4=nmm symmetry).
As shown in Fig. 1(b), each FST unit cell contains two

Fe atoms that are quite close to each other (less than 2.7 Å)
[33]. The DFT calculations show that the 3d orbitals of
Fe atoms dominate near the Fermi level [29,37,38]. Under
the appropriate consideration of the crystal symmetry,
the bases describing the low energy bands near the Γ
and Z points are simplified as Eq. S1 in the Supplemental
Material [39]. We note that the first three bases j1i, j2i, and
j3i in Eq. S1 have an even parity, while the basis j4i has an
odd parity. As we shall show below, the band inversion
between bands j2i and j4i in the Γ − Z direction leads to a
topologically nontrivial band structure in FST.
The effective model at the Γ point or Z point has

the full point group symmetry D4h of the crystal. The full
Hamiltonian with spin-orbit coupling (SOC) under the
spinful bases ðj1i; j2i; j3i; j4iÞ ⊗ ðj↑i; j↓iÞ takes the form

HðkÞ ¼ H0 ⊗ 12 þHSOC; ð1Þ

where H0 is a 4-band spinless Hamiltonian, andHSOC is an
8 × 8 matrix describing the SOC interaction. They are
given explicitly in Eqs. S2 and S4, respectively, in the

Supplemental Material [39]. The parameters of the effective
Hamiltonian H at the Γ point and Z point are listed in
Table I in the Supplemental Material [39], which are
obtained by fitting with the DFT calculations [39]. As
shown in Figs. 1(d)–1(f), the effective model (blue dashed
lines) reproduces the band dispersions of the DFT calcu-
lations (red lines) well. In particular, the odd parity state j4i
(the highest band at the Γ point) is very dispersive along the
Γ − Z direction with a negative effective mass. As a result,
it crosses with the other three even parity states in the Γ − Z
direction. In the presence of SOC, a topologically nontrivial
band gap is opened between states j2i and j4i nearby the
Fermi level (0 eV), while the crossing between state j4i and
state j1i (j3i) is protected by the crystalline symmetry.
Figure 1(g) shows the energy spectrum of the effective
Hamiltonian H (using the parameters at the Γ point)
with an open boundary in the z direction. Because of
the nontrivial topology of the band structures, a surface
Dirac cone arises, in consistency with the previous Green’s
function calculations [29].
When the superconductivity is considered, the electronic

states on the FST (001) surface may fall into either a two
dimensional (2D) normal superconductivity (NSC) phase
or a TSC phase. It is usually believed that the surface is a
TSC when the Fermi level crosses the surface Dirac cone,
where the surface electrons occupy a single band and are
thus forced to form a topologically nontrivial pairing under
the bulk proximity effect [6]. On the other hand, when
the Fermi level is far away from the Dirac cone, all the
electrons occupy the bulk bands and the surface is
topologically trivial. Therefore, a surface phase transition
from the NSC to the TSC is expected as the chemical
potential approaches the Dirac cone. When a vortex line
with π magnetic flux is introduced in the bulk of the
superconductor, there will be two MZMs (no MZM)
trapped at the ends of the vortex line if the surface of
the superconductor is TSC (NSC). For a better illustration,
we have plotted the schematic evolution of the surface
MZMs in the superconducting vortex line during the
surface topological phase transition in Figs. 2(a)–2(d):
In the NSC phase, the vortex line is gapped and there is
no surface MZMs [Fig. 2(a)]. When the chemical potential
is tuned to the transition point, the vortex line becomes
gapless, as shown in Fig. 2(b). As the chemical potential is
tuned into the TSC phase, the MZMs arise as shown in
Figs. 2(c) and 2(d), whose localization length is inversely
proportional to the bound state gap in the one dimensional
(1D) bulk of the vortex line. This feature can be used to
distinguish whether the surface of a three-dimensional
superconductor is TSC or not [47].
An equivalent understanding of the mechanism of the

surface Majorana mode is to view the vortex line as a
Majorana chain [1,47]. Tuning the bulk Fermi level
effectively varies the parameters of the Majorana chain,
and thus drives a phase transition between 1D TSC and

FIG. 1. (a) Side view of the crystal structure of FST. (b) Top
view of FST, where two Fe sites are marked by the brown circles,
while two Se (Te) sites are marked by the light blue circles, with
�z0 labeling their height from the Fe plane. (c) The first BZ of
FST with symmetry P4=nmm and six types of inequivalent
TRIPs. The light blue square shows the 2D BZ of the projected
(001) surface, in which the high-symmetry k points Γ̄, X̄, and M̄
are labeled. (d)–(f) The low energy dispersions of FSTwith SOC
around the Γ and Z points. Red lines are the band structures
calculated by the DFT calculations, while the blue dashes are the
results from our effective model fitting. (g) The surface states
calculated by the effective Hamiltonian and the parameters listed
in Table I in the Supplemental Material [39]. In all figures, 0 eV
corresponds to the Fermi level of the stoichiometric FST.
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NSC. Such a phase transition is characterized by a gap
closing of the BdG spectrum of the chain at high symmetry
points, namely, either kz ¼ 0 (Γ point) or kz ¼ π (Z point)
[47]. Therefore, we numerically calculate the BdG spec-
trum on a vortex line along the z direction in FST to
determine the topological phase transition points. Since
FST is an extreme type II superconductor with Ginzberg-
Landau parameter κ ≈ 180 [48,49], the magnetic field in
the vortex is extremely weak and can be ignored in the
calculation. We take the following BdGHamiltonian for the
vortex line:

HBdG ¼
�

HðkÞ − μ Δseiθ tanhðr=ξÞ
Δse−iθ tanhðr=ξÞ −HðkÞ þ μ

�
; ð2Þ

where HðkÞ is the effective 8-band Hamiltonian as shown
explicitly in the Supplemental Material [39], μ is the
chemical potential, (r, θ) are the polar coordinates in the
xy plane. ξ ¼ 3 nm is the coherence length [48], and
Δs ¼ diagðΔ1;Δ2;Δ2;Δ1Þ ⊗ 12 is the SC gap measured
in the bulk FST, withΔ1 ¼ 2.5 andΔ2 ¼ 1.7 meV describ-
ing the superconducting gap of the dx2−y2 and dxz (dyz)
orbital, respectively [30,31]. Note that kz is still a good
quantum number. By discretizing the polar coordinate r, we
calculate the eigenvalues of the BdG Hamiltonian numeri-
cally at a given μ and kz on a disk with the radius 500 nm.

The calculated energy spectra at the Γ point and Z point are
shown in Figs. 2(e) and 2(f), respectively. The energy gap
at the Γ point closes at two chemical potentials μ1 ¼ 31 and
μ2 ¼ 62 meV, while the spectrum at the Z point is always
gapped. Therefore, we expect TSC to be realized in the
chemical potential interval μ ∈ ½μ1; μ2�. The energy dis-
persions on the vortex line are plotted at different chemical
potentials in the TSC phase [Figs. 3(a) and 3(d)], at the
phase transition point [Figs. 3(b), 3(e)] and in the trivial
phase [Figs. 3(c), 3(f)]. As expected, the spectrum is always
gapped away from the transition point, which allows a
well-defined Zak phase θZ as the characteristic topological
number [50,51]. In particular, we calculate the Zak phases
for μ ¼ 50 and μ ¼ 70 meV, respectively, and find that the
Zak phase is θZ ¼ π at μ ¼ 50 meV, and is θZ ¼ 0 at
μ ¼ 70 meV. This verifies that the (001) surface of FST is a
TSC in the chemical potential interval μ ∈ ½μ1; μ2�. We note
that the energy interval ½μ1; μ2� is slightly lower than the
energies of the surface Dirac cone shown in Fig. 1(g),
due to the particle-hole asymmetry of the bulk band
structures [52]. The transition points μ1 and μ2, however,
do not agree with the π-Berry-phase criteria given in
Ref. [47] due to the multiple bands physics in FST (see
Supplemental Material [39]).
The MZMs at the ends of the vortex become more

localized when the system is deeply in the TSC phase
[Figs. 2(c) and 2(d)]. The localization length lM of the
MZMs can be estimated with the 1D bulk energy gap E0 of
the vortex line, which is up to 0.03 meV in the TSC phase
as shown in Fig. 3. With the bulk coherence length
ξ ≈ ℏvF=Δ1 ≈ 3 nm, we estimate the size of the Majorana
zero mode to be lM ∼ ℏvF=E0 ¼ ðΔ1=E0Þξ ∼ 102 nm,
where vF denotes the Fermi velocity in the bulk FST.
Our results show that one needs to dope some electrons

into FST to realize a surface TSC. Fortunately, FST is such

FIG. 2. (a)–(d) The schematic evolution of the surface MZMs in
a vortex line. As the chemical potential is tuned from the trivial
regime (a) towards the surface TSC regime, two Majorana zero
modes arise [(b)] and then become more and more localized at the
ends of the vortex line [(c) and (d)]. (e) The energy spectrum at
the Γ point of a vortex line along the z direction as a function of
the chemical potential μ. The energy gap closes at μ1 ¼ 31 and
μ2 ¼ 62 meV, respectively, showing the (001) surface is a TSC in
the range μ ∈ ½μ1; μ2�. (f) The energy spectrum at the Z point of
the vortex line as a function of the chemical potential μ. There is
no gap closing at the Z point, so the phase transitions are solely
determined by the gap closing at the Γ point. In all figures,
chemical potential μ ¼ 0 eV corresponds to the Fermi level of the
stoichiometric FST.

FIG. 3. Low energy dispersions of the vortex line for the TSC
phase [(a) and (d)], the transition point [(b) and (e)] and the NSC
phase [(c) and (f)], respectively. Here μ ¼ 50 and μ ¼ 70 meV
are chosen to represent the TSC and NSC phase, while the results
of the transition point are calculated at μ ¼ 62 meV. (d),(e), and
(f) are the enlargement of (a),(b), and (c) to show the gap clearly.
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a material that it is usually self-doped by the excess
Fe atoms when synthesized in experiments, as is denoted
by the chemical formula Fe1þySexTe1−x. In particular,
the superconductivity of FST is robust in a wide range
−0.1 < y < 0.1 [32–34]. To estimate the doping level for
realizing the surface TSC, we perform the virtual crystal
calculations for Fe1þySe0.5Te0.5 [39], and plot the chemical
potential μ as a function of the excess Fe content y in
Fig. S2 [39]. The chemical potential range for the surface
TSC phase corresponds to 0.03 < y < 0.06, which is well
within the reach of the experiments. Besides, the chemical
potential can also be tuned by an electrical gate voltage
(2 ∼ 3 V are needed). In a recent experiment work,
using the scanning tunneling microscopy, Massee et al.,
observed a sharp zero bias peak at 0.25 K in the super-
conducting vortex core on the (001) surface of Fe(Te,Se)
[53], indicating the possible presence of the MZMs.
Moreover, according to our calculations discussed above,
such a zero bias peak, if is induced by a MZM, should
disappear when the chemical potential is tuned into the
NSC regime via the excess Fe doping or electrical gating.
Therefore, a further experimental verification of our pre-
dictions is necessary.
To investigate the dependence of the TSC regime on the

bulk pairing gap Δ ¼ ðΔ1;Δ2Þ, we vary Δ in the range up
to 3.5Δexp, then calculate and plot the phase boundaries of
the TSC as shown in Fig. 4, where Δexp ¼ ð2.5; 1.7 meV)
is the experimental pairing gap. Our results show that the
TSC phase is narrowed and shifted towards the Fermi level
asΔ increasing, and is bounded by a dome up toΔ ¼ 3Δexp

as shown in the inset of Fig. 4. This is because that, when
the bulk pairing increases and becomes more dominant, the
SSs can pair with the bulk states more easily. Therefore, the

surface TSC is suppressed and finally destroyed. Our result
is theoretically a new discovery compared to the previous
theories that only the zero-pairing-gap limit is considered
[6–8,47], where the TSC phase always exists. Besides, due
to the obvious particle-hole asymmetry of FST, the TSC
dome is also particle-hole asymmetric.
In the real materials, the pairing gap Δ decreases as the

temperature T increases. Roughly, the BCS theory gives
ΔðTÞ ∼ Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
, where Δ0 is the zero temperature

pairing gap. This enables one to see a phase transition from
TSC to NSC by tuning the temperature T of the system at
fixed chemical potentials. For instance, at μ ¼ 35 meV of
our results as shown in Fig. 4, the surface of FST is in the
TSC phase at T ¼ 0 (Δ ∼ Δexp) and is trivial at T ¼ Tc

(Δ ∼ 0). Ideally, one would expect there is a zero peak on
the TSC side, while there is a dip on the NSC side.
However, the resolution of the zero peak will be reduced by
the finite temperature, so that the transition might not be so
sharp experimentally.
As a topologically protected phase, the surface TSC and

the Majorana mode is robust against the weak disorders. To
demonstrate this, we have introduced a random chemical
potential disorder in the radial direction of the vortex line in
our calculations. According to our calculations, up to a 3%
impurity level, as shown in the Fig. S3 of the Supplemental
Material [39], the disorder only shifts the TSC phase
boundaries slightly.
Last, we note that such topologically nontrivial band

structures are quite common in the Fe-based superconduc-
tors. Similar band inversion has been found in the other
superconducting systems, including LiFeAs (Tc ¼ 18 K)
[29,54] and ðTl;RbÞyFe2−xSe2 (Tc ¼ 32 K) [55], which
have the higher superconductivity transition temperatures
and may support a larger-gap surface TSC. Accordingly,
the physical mechanism of the surface TSC discussed
in our article immediately applies for this large class of
materials.
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