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At the jamming transition, amorphous packings are known to display anomalous vibrational modes with
a density of states (DOS) that remains constant at low frequency. The scaling of the DOS at higher packing
fractions remains, however, unclear. One might expect to find a simple Debye scaling, but recent results
from effective medium theory and the exact solution of mean-field models both predict an anomalous,
non-Debye scaling. Being mean-field in nature, however, these solutions are only strictly valid in the
limit of infinite spatial dimension, and it is unclear what value they have for finite-dimensional systems.
Here, we study packings of soft spheres in dimensions 3 through 7 and find, away from jamming,
a universal non-Debye scaling of the DOS that is consistent with the mean-field predictions. We also
consider how the soft mode participation ratio evolves as dimension increases.
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Introduction.—Although amorphous solids (such as
foams, grain packings, and glasses) constitute most of
solid matter, they are so poorly understood that many
textbooks focus almost exclusively on their crystalline
counterpart. However, thanks to an exact solution of a
model for jamming and a complementary description of
mechanical marginality [1,2], our fundamental understand-
ing of these solids has recently exploded. Yet these
advances also leave open many questions concerning their
applicability to real systems, especially away from the
jamming transition.
One such question is the microscopic origin of the boson

peak, which is an excess of vibrational modes in the density
of states (DOS) of amorphous solids with respect to
Debye’s standard model for phonons in crystalline solids
[3]. Since the boson peak anomaly was carefully studied by
Raman and neutron scattering [4–6], it has been given a
variety of explanations, ranging from specific features of
interatomic forces to a broadened van Hove singularity [7].
From the viewpoint of amorphous solids as the paragon of
disorder, various models have also been advanced [8–11].
Here, we consider a proposal that recently emerged

from the study of the simplest model of amorphous solids:
a disordered assembly of soft, purely repulsive spheres
at zero temperature under a confining pressure P. This
jammed solid becomes mechanically unstable at a sharply
defined jamming transition, upon reaching P ¼ 0 [12]. The
study of this transition by statistical and soft-matter physics
[13] has revealed that the geometric [14], rheological [15],
vibrational [16,17], and elastic properties [18] of solids
close to jamming markedly differ from those of crystals.

In particular, precisely at the jamming transition the DOS
DðωÞ, with frequency ω, becomes flat for ω → 0, which
leads to a diverging boson peak [17,19]. It is thus natural
to wonder what is the low-frequency behavior of DðωÞ in
the vicinity of this transition, and whether it could provide
an explanation of the boson peak also away from this
singular point.
A crucial concept associated with jamming is that of

marginal stability. At the jamming transition the system is
on the verge of mechanical instability, which naturally
gives rise to low-energy excitations [17,18]. Surprisingly,
it was recently shown that amorphous solids remain
marginally stable even at finite pressures, and, by means
of effective medium theory, that this marginality leads to a
modified Debye behavior with DðωÞ ∼ ω2—as in crystals
but with a constant prefactor much larger than expected
from standard elasticity [16,20]. This result offers a
promising account for the boson peak. Interestingly, the
same scaling behavior was also recently uncovered in the
perceptron, which is an exactly solvable model in the same
universality class as soft spheres close to jamming [21].
This concordance likely results from both effective medium
theory and the perceptron being mean-field descriptions
that are expected to exactly capture the behavior of infinite-
dimensional systems [22].
Before considering possible shortcomings of such

descriptions, let us first detail their predictions. Away from
jamming, at large length scales a solid should behave as a
continuous medium. One therefore expects a Debye scaling
of the DOS at low frequency, i.e., DðωÞ ∼ ωd−1=cd, where
c is the speed of sound in the solid. Upon approaching
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jamming, the speed of sound of transverse (shear) waves
vanishes as cT ¼ ffiffiffiffiffiffiffiffiffi

G=ρ
p

∝ ffiffiffiffiffiffi

ω�
p

, where ω� is a character-
istic frequency that vanishes at jamming, G ∝ ω� is the
shear modulus, and ρ is the number density [12]. Close to
jamming, transverse waves should thus dominate the low-
frequency regime. Combining this result with marginal
stability, effective medium theory [20] indeed gives

DðωÞ ∼

8

>

>

<

>

>

:

ωd−1=ωd=2
� ω ≪ ω0

ω2=ω2� ω0 ≪ ω ≪ ω�
const ω ≫ ω�

ð1Þ

where ω0 is a threshold frequency that separates the Debye
from the anomalous ω2 regime. Interestingly, for infinite-
dimensional, marginally stable systems, the exact solution
of the perceptron shows that ω0 ¼ 0 for a finite region
around jamming [21], implying that the Debye regime
disappears altogether. In d ¼ 3, although both the Debye
and the anomalous regimes scale as ω2, the prefactor of the
latter, 1=ω2�, diverges much faster than the Debye prefactor,
1=ω3=2

� , upon approaching the jamming transition (as was
numerically validated in Ref. [20]). Thus, even for ω0 > 0,
the anomalous regime is expected to bury the Debye
scaling in systems sufficiently close to jamming.
Further validating these predictions is, however, non-

trivial. For obvious physical reasons, most studies of
amorphous solids have explored the nature of excitations
in two- or three-dimensional systems. These results, how-
ever, may be strongly influenced by low-dimensional
effects that are absent from mean-field descriptions and
may partially obfuscate the universality of the phenome-
non. For instance, some of the low-frequency excitations
are known to be spatially quasilocalized [23–25] and are
associated with structural soft spots [26], while only purely
delocalized modes can be found in infinite dimensions [21].
The finite-dimensional behavior of ω0 may also be richer
than in infinite-dimensional models. In this Letter, we
reconcile physical systems and mean-field theories by
studying the vibrational modes of soft-sphere packings
both as a function of packing fraction and spatial dimen-
sion. In doing so, we disentangle universal from low-
dimensional features of the vibrational spectrum, similarly
to what has been done for the force network [27,28].
We remarkably find that the ω2 regime is present in all
dimensions down to the lowest numerically accessible
frequencies.
Model description and Hessian.—We generate packings

of N frictionless spheres (N ranges from 1024 to 16 384)
interacting via a one-sided (contact) harmonic potential
within a periodic cubic box in d ¼ 3–7. The total system
energy is U ¼ 1

2

P

N
i<jΘðσ − rijÞðσ − rijÞ2, where σ is the

particle diameter, rij is the distance between particles i and
j, andΘ is the Heaviside step function. The relevant control

parameter is the packing fraction, ϕ ¼ ρVdðσÞ, where
ρ≡ N=V for a system of volume V and VdðσÞ is the
d-dimensional volume of a ball of radius σ. Initializing with
Poisson-distributed spheres at very high ϕ, configurations
are obtained by iteratively (i) deflating particles in small steps
and (ii) minimizing the system energy, using the numerical
scheme described in Refs. [28,29]. For ϕ > ϕJ we obtain
jammed packings with locally minimal U > 0, while for
ϕ < ϕJ configurations are unjammed, and hence notmechan-
ically stable atT ¼ 0. The limit caseϕ ¼ ϕJ andU ¼ 0 is the
jamming transition for a given initial configuration. We thus
define the excess packing fraction Δϕ≡ ϕ − ϕJ. (For this
system pressure P ∝

ffiffiffiffi

U
p

∝ Δϕ [12,28].)
In order to extract information about the harmonic

excitations of the system, we compute the Hessian matrix

Hαβ
ij ¼ ∂2U

∂rαi ∂rβj
¼ δij

X

k∈∂i

�

nαikn
β
ik þ

εik
rik

ðnαiknβik − δαβÞ
�

− δhiji

�

nαijn
β
ij þ

εij
rij

ðnαijnβij − δαβÞ
�

;

where α; β ¼ 1…d are vector components, εij ¼ σ − rij is
the overlap between two spheres, nij ¼ ð rj − riÞ=rij is a
unit vector, both δij and δαβ are Kronecker deltas, δhiji
indicates a contact between a pair of particles, and ∂i
denotes the set of neighbors of i. The eigenvectors fuαi gk
and eigenvalues λk of the Hessian then provide the vibra-
tional modes and their angular frequencies, ωk ¼

ffiffiffiffiffi

λk
p

,
respectively.
Universal low-frequency scaling.—In all dimensions d

studied, DðωÞ is found to have the same overall shape,
independently of system size. Figure 1 illustrates this

FIG. 1. DOS for a single configuration in d ¼ 4 for N ¼ 8192
with rescaled ω. The collapsed data are fitted to Eq. (3)
(solid line). Inset: DOS for Δϕ=ϕJ ¼ 9.1 × 10−8, 9.2 × 10−7,
9.2 × 10−6, 9.2 × 10−5, 9.0 × 10−4, 8.7 × 10−3, 8.0 × 10−2, and
9.4 × 10−1, from left to right. Errors are smaller than the symbol
size, except at very low ω, where they are comparable to the
data scatter.
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universality for d ¼ 4. At Δϕ ¼ 0, the nontrivial part of the
DOS, i.e., excluding rattlers, goes to a constant for ω → 0,
as has been widely reported in d ¼ 2 and 3 [16–18]. For
Δϕ > 0, the DOS peels off from the plateau below a given
ω�. It has been argued theoretically [16] and observed in
d ¼ 3 [17] that this crossover should scale as ω� ∝

ffiffiffiffiffiffiffi

Δϕ
p

.
Here also, this scaling collapses DðωÞ onto a single master
curve at small Δϕ (Fig. 1).
From the rescaled results, we clearly see that below ω�

the DOS scales as ω2 in all d, as in the mean-field
descriptions [20,21]. In order to further scrutinize these
results we use the perceptron DOS [21],

DðωÞ ¼ ω2ðω2
max − ω2Þ1=2=π
ω2 þ ω2�

; ð2Þ

where ωmax is the highest frequency. The model is not
translationally invariant and thus its DOS never reaches
a Debye-like regime, even as ω ≪ ω0, but as long as
ω0 ≪ ω ≪ ωmax, we can reasonably fit the soft sphere
results to a generalized form,

Dðω;ΔϕÞ ≈ Aω2

ω2 þ BΔϕ=ϕJ
; ð3Þ

with free parameters A and B (Fig. 1). Remarkably, Eq. (3)
captures the collapse of the DOS in all d, with roughly the
same fitted values for A ≈ 0.4 and B ≈ 1 in all cases (Fig. 2,
top). We thus consistently determine that ω0 is smaller than
the observable range of frequencies,which is compatible both
with a very weak scaling of ω0 with Δϕ and its complete
vanishing, as observed in infinite-dimensional models.
This scaling universality does not, however, extend to very

large Δϕ. For Δϕ=ϕJ ≳ 1, the DOS systematically deviates
from the master curve on which the lower packing fraction
results effortlessly collapse (Fig. 2). The low frequency
regime then grows faster than ω2 in all dimensions, but is
not Debye-like either. In fact, no clear power-law scaling can
be observed. Interestingly, the results nonetheless tend toward
a dimensionally independent form as d increases (Fig. 2,
bottom), suggesting a certain universality. A possible inter-
pretation is that the various scaling regimes are then mixed,
with ω0 ∼ ω� ∼ ωmax; hence, the phenomenological form
[Eq. (3)] fails. Theweak dimensional dependence might result
from the integration within the force network—which occurs
for Δϕ ≈ 0.1—of particles that were rattlers at ϕJ, whose
density decays exponentially quicklywith increasing d (Fig. 2,
inset) [27]. Although we cannot provide a clear resolution of
these effects here, we get back to this issue in the conclusion.
Localization.—In light of the remarkable agreement

between the infinite-dimensional mean-field theory and
numerical results for soft spheres (for Δϕ=ϕJ ≲ 1), one
may wonder if their eigenmode structure is also similar.
In d ¼ 2 and 3, however, soft spheres are known to have
low-frequency modes that are quasilocalized [11,23,24,26],
while modes in infinite dimensions are always perfectly

delocalized [21], because particles then have an infinite
number of neighbors and the model becomes effectively
long range. To study the evolution of eigenmode localiza-
tion with d, we assess the degree of localization of each
eigenmode f uiðωÞg by measuring its inverse participation
ratio (IPR) [30],

YðωÞ ¼
P

N
i j uiðωÞj4

½Pij uiðωÞj2�2
: ð4Þ

By this measure, a mode that is completely localized on a
single particle has Y ¼ 1, while a mode extended over the
full system has Y ∼ N−1.
Figure 3 shows the evolution of the IPR with frequency in

d ¼ 4 for different Δϕ. Following Ref. [24], we distinguish
three regimes: (i) at low frequency, we find relatively loca-
lized modes with intermediate IPR (as in the Heisenberg
model [30]); (ii) at intermediate frequency, we find a band of
extendedmodes with Y ∼ 1=N; and (iii) at high frequency, Y
remains of order 1=N butwith a quickly increasing prefactor,
signalling incipient localization at the band edge. This
categorization is also supported by the finite-size scaling

(a)

(b)

FIG. 2. DOS forN ¼ 8192 in d ¼ 3 to 7 averaged over 30 to 50
configurations for (a) moderately compressed Δϕ=ϕJ ≈ 0.2 and
(b) highly compressed Δϕ=ϕJ ≈ 1.4 above jamming. The solid
line gives Eq. (3) with the fit parameters obtained in Fig. 1. Inset:
the fraction f of rattlers in the system (and hence the fraction of
trivial zero modes in the DOS) vanishes around Δϕ ≈ 0.1, and is
exponentially suppressed with dimension [27]. Errors are smaller
than the symbol size, except at very low ω, where they are
comparable to the data scatter.
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of the IPR [31]. In addition to its robust evolution with
frequency, YðωÞ shows an interesting dependence on Δϕ
and d. As Δϕ increases, low-frequency modes become
increasingly localized (Fig. 3), while upon approaching
jamming these same modes become increasingly delocalized.

Delocalization in this limit, however, is never complete. In
order to observe further IPR decrease, one must consider
higher-dimensional systems (Fig. 4). Going from d ¼ 4 to 7,
as expected for the reason mentioned above, systematically
decreases the degree of localization for all Δϕ. Upon
reaching d ¼ ∞ the spheres are expected to behave equiv-
alently to the perceptron. Localized modes are thus related to
low-dimensional structure; their precise geometrical origin,
however, remains the object of active study [30,32].
Conclusion.—Our analysis reconciles the DOS of amor-

phous solids from the perceptron and effective medium
theory [20,21], on the one hand, and simulation results in
d ¼ 2 and 3 [23,24], on the other. The key observations are
twofold: (i) mean-field scaling of the DOS is robustly
observed in all dimensions for Δϕ=ϕJ ≲ 1, (ii) delocaliza-
tion of low-frequency modes increases as Δϕ=ϕJ → 0 and
as d → ∞. A boson peak contribution whose origin is
purely mean field in nature therefore exists in amorphous
solids even far from jamming, while quasilocalized modes
are a low-dimensional effect whose origin is likely related
to specific geometrical features [32]. Because some of the
structural features of configurations at ϕJ, notably rattlers
and bucklers, vanish exponentially as d increases [27,28],
we tentatively conclude that quasilocalized modes also
cannot be obtained perturbatively from mean-field, infinite-
dimensional descriptions. We also conclude that the exist-
ence of a boson peak is independent of quasilocalization
proper, in contrast to Ref. [11].
Another interesting feature of the DOS is observed

for Δϕ=ϕJ ≳ 1. Even though the results remain largely
independent of dimension, they are quite distinct from the
mean-field scaling form that easily describes theΔϕ=ϕJ<1
regime. Whether this effect is due to a breakdown of
some of the assumptions made in the comparison or to the
presence of a phase transition at T ¼ 0 as has recently been
proposed [33] remains, however, an open question.
Data relevant to this work have been archived and can be

accessed at [34].
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