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Although tightly focused intense ultrashort laser pulses are used in many applications from nano-
processing to warm dense matter physics, their nonparaxial propagation implies the use of numerical
simulations with vectorial wave equations or exact Maxwell solvers that have serious limitations and thus
have hindered progress in this important field up to now. Here we present an elegant and robust solution that
allows one to map the problem on one that can be addressed by simple scalar wave equations. The solution
is based on a transformation optics approach and its validity is demonstrated in both the linear and the
nonlinear regime. Our solution allows accessing challenging problems of extreme spatiotemporal
localization of high power laser radiation that remain almost unexplored theoretically until now.
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Introduction.—Tightly focused ultrashort laser pulses are
used in many applications including laser machining of
materials [1,2], eye surgery [3], and nanoprocessing of
biological cells [4]. Also, the high intensities that can be
achieved under such conditions enable warm dense matter
studies and the observation of exciting new material states
[5,6]. The interaction of tightly focused light with matter is
strongly nonlinear and includes effects like self-focusing,
multiphoton absorption, and plasma generation. Experi-
mental studies of these complex propagation dynamics in
such small volumes become extremely hard and therefore
corresponding numerical simulations are necessary to
elucidate the underlying physics.
Simulations of nonlinear propagation of ultrashort laser

pulses in the case of collimated or loosely focused laser
beams can be addressed by considering a scalar wave
equation only for a single component of the laser field.
However, in the case of tight focusing, the nonparaxial
nature of the problem imposes the need to use a vectorial
wave equation, that is, a separate equation for each
component of the field, or the use of exact Maxwell solvers
[7]. Both solutions suffer from the need of unrealistic large
computational resources and time, and thus studies in the
field of tightly focused ultrashort laser pulses in nonlinear
media have been very limited until now.
There is only a small number of publications where the

authors study nonlinear propagation of ultrashort laser
pulses taking into account vectorial and nonparaxial effects
[8–12]. Among them the majority considers these effects
only as a mechanism that arrests the catastrophic intensity
growth during the self-focusing [8,9,11]. As far as we

know, only the papers by Arnold et al. [10] and Couairon
et al. [12] are devoted specifically to simulations of tightly
focused ultrashort pulses in nonlinear media. In both papers
the authors develop appropriate vectorial wave equations.
Finally, Ref. [12] demonstrated that tight focusing can,
under conditions, be simulated using a scalar wave equa-
tion, though this solution cannot be applied to extreme
focusing geometries.
Here we propose a simple and elegant solution where

one maps the nonparaxial original problem on an equiv-
alent problem of propagation in a medium with a higher
refractive index, where the propagation becomes paraxial.
This is a holistic solution and allows one to simulate the
tight focusing without restrictions on the beam shape,
focusing geometry, and numerical aperture, while it can
be applied to any of the existing scalar wave equations,
both linear and nonlinear.
In the following, we present in detail the solution and

demonstrate its validity by comparing with exact vectorial
models and experiments, both in the linear and the non-
linear regime.
Transformation solution.—Without loss of generality, let

us consider a light beam focused by an objective with
numerical aperture NA given by

NA ¼ n sin θ ¼ n
a
f
; ð1Þ

where n is the refractive index of the propagationmedium, θ
is the half-angle of the maximum cone of light that can exit
the objective,a is the radius of the objective’s aperture, andf
is the focal distance (see Fig. 1). To simulate this problem
with a scalar wave equation, we specify the initial field, with
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a parabolic phase, in a plane perpendicular to the propaga-
tion direction (blue line in Fig. 1). Then, by successive
iterations, we find the field in other transverse planes located
further along the propagation axis. However, the field of a
tightly focused beam after the objective is distributed on a
curved surface (red line in Fig. 1) and the main source of
inaccuracy in simulations of the tight focusing with scalar
wave equations originates from the fact that one neglects the
curvature of this surface [12]. The most straightforward
solution to this problem would be to use the Maxwell
equations, where we can specify the initial condition on an
arbitrary surface by adding a longitudinal field component.
However, Eq. (1) suggests another solution; namely, it tells
us that in amediumwith a higher refractive index n the same
value of NA, that is, the same focusing tightness, can be
obtained with smaller apertures or longer focal distances.
Triggered by this observation and transformation optics
analogies, we propose to map the original problem on a
problem of propagation in a mediumwith a scaled refractive
index ns given by

ns ¼ sn; ð2Þ
where n is the original refractive index and s is a scaling
factor (for complex n ¼ n0 þ in00 the transformation should
be ns ¼ sn0 þ in00=s). According to the Fermat principle,
this new problem will be equivalent to the original one if at
the same time we scale down by the same amount the
propagation length.
As one increases the refractive index n of the medium by

s times, while keeping constant the objective’s aperture a
(for conservation of energy), the focal distance also
increases by the same factor, which can be interpreted as
a stretching of space along the z axis. In Fig. 1 we show
graphically how the strong wave front curvature is reduced
in response to this space stretching. Above a certain scaling
factor s, the spherical surface will be flat enough and one
can safely apply a scalar wave equation. In order to return
to the original geometry the only thing that one needs to do
is to compress the space along the z axis by s times.
To quantify the changes in the curvature, let us calculate

the distance za between the edge of the spherical surface
and the plane z ¼ 0. From Fig. 1 za ¼ fð1 − cos θÞ and
applying Eq. (1) with ns ¼ sn, we obtain

za ¼ a
sn
NA

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

NA2

ðsnÞ2

s �
: ð3Þ

A scalar wave equation becomes inaccurate when za
exceeds the confocal parameter [12], which would limit
the validity of scalar simulations up to NA ≈ 0.2. However,
let us consider a much stronger condition, namely, let us
demand za to be of the order of the wavelength λ of the
focused light. Setting za ¼ λ in Eq. (3) we find

s ¼ NA
n

a2 þ λ2

2aλ
: ð4Þ

From Eq. (4) for NA ¼ 1, a ¼ 1 mm, and λ ¼ 800 nm the
scaling factor is s ¼ 625. In the following we will use s ¼
1000 in order to be always above this limit.
Linear propagation.—To verify the validity of our

solution let us consider the following scalar nonparaxial
wave equation:

∂Ê
∂z ¼ ikzÊ; ð5Þ

where Êðkx; ky; zÞ is the spatial spectrum of the field, kz ¼
ðk20 − k2x − k2yÞ1=2 is the propagation constant, kx and ky are
the spatial frequencies, k0 ¼ n0ω0=c0 is the wave number,
n0 is the refractive index at the wave’s frequency ω0, and c0
is the speed of light in vacuum. As initial condition for
Eq. (5) we take a flattop beam that corresponds to a part of
plane wave passed through the objective’s aperture:

Eðx; y; z ¼ 0Þ ¼ Θða − rÞ exp
�
−ik0

r2

2f

�
; ð6Þ

where r ¼ ðx2 þ y2Þ1=2 and Θ is the step function. For
applying the transformation solution to Eqs. (5) and (6), we
replace the original refractive index n0 by the scaled one,
ns ¼ sn0, and in order to keep the same NAwe decrease the
ratio a=f by s times [see Eq. (1)], which is done by
increasing the focal distance f by s times. The change in
the refractive index also affects the wave number k0, which
becomes s times larger. Therefore, the initial condition (6)
does not change, since it depends only on the ratio k0=f.
The most important change affects the propagation constant
kz, which now reads as kz ¼ ½ðsk0Þ2 − k2x − k2y�1=2. Since
the aperture a is not changed, the spatial spectrum does not
change either. Therefore, by stretching the wave number k0,
we actually reach a point where ðsk0Þ2 ≫ k2x þ k2y and
where we can safely apply the paraxial approximation for
kz, namely, kz ≈ sk0 − ðk2x þ k2yÞ=2sk0.
Using the new propagation constant kz, either in its

original or paraxial form (the latter does not change the
result), we simulate the propagation with Eqs. (5) and (6).
In order to return to the original problem, we have two

FIG. 1. Sketch of the transformation principle. The initial
strongly curved wave front, responsible for the nonparaxial
propagation effects, becomes flatter and approaches the paraxial
propagation as one increases the scaling factor s.
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choices: we can either divide by s times the lengths along
the propagation axis after the simulation, or we can use the
original lengths, but increase by s times each step along the
propagation axis.
To begin with, let us consider a plane wave with λ0 ¼

800 nm focused by an objectivewithNA ¼ 0.3 and aperture
a ¼ 0.6 mm into a medium with n0 ¼ 1. In this case,
according to Eq. (1), the focal distance is f ¼ 2 mm.
Figure 2 depicts the normalized intensity distributions
Iðx; zÞ ¼ jEðx; y ¼ 0; zÞj2 near the focal zone. Figure 2(a)
shows the result obtained by PSF LAB code that implements
a rigorous vectorial theory developed by Nasse and Woehl
[13]. Figure 2(b) shows the results of our simulations for
s ¼ 1 andFig. 2(c) for s ¼ 1000. Finally, Fig. 2(d) shows the
relative on-axis intensities for all the above cases. One can
clearly see that the intensity obtained in the simulation with
s ¼ 1 is strongly distorted and its peak intensity is consid-
erably lower relative to the exact solution. On the contrary,

the simulation with s ¼ 1000 provides precisely the same
solution as the exact vectorial theory.
To verify the validity of our solution under extreme

conditions we repeated the above simulations for NA ¼ 1.
Figure 3(a) shows the intensity profile near the focus from
the exact vectorial theory, Fig. 3(b) shows the result of our
simulation with s ¼ 1000, and Fig. 3(c) compares the
normalized on-axis intensities between the two. Again, one
can clearly see that the transformation solution works
surprisingly well: even in the extreme case of NA ¼ 1
the difference between the simulated and the exact theory
intensity distributions is less than 1 wavelength on the
propagation direction, while on the transverse one they are
exactly the same. The minor difference on the propagation
axis appears because a small part of the beam energy goes
into the longitudinal field component, which is neglected in
scalar wave equations.
Nonlinear propagation.—In the previous section we

demonstrated how the transformation solution can be
applied for simulations of tightly focused monochromatic
beams in linear media and show that the obtained results are
in very good agreement with the rigorous vectorial theory.
Since there is no exact theory that can be used to test the
validity of the transformation approach for simulations of
tightly focused ultrashort laser pulses in nonlinear media
we will validate our solution by direct comparison with
related nonlinear propagation experiments in silicon, a
material exhibiting strong nonlinearities.
In our experiments we use a Ti:sapphire laser source

combined with an optical parametric amplifier in order to
generate 60 fs (FWHM) linearly polarized laser pulses at
1300 nm. Using microscope objectives of different NAs we
tightly focus the generated laser pulses at the vicinity of the
rear surface of a 1 mm pure crystalline silicon sample. We
image the fluence distribution at the rear surface using a
microscopy setup with an NA ¼ 0.7 objective and an
InGaAs camera. By moving the focusing objective along
the optical axis, we obtain a stack of images that we use to
reconstruct a full 3D fluence distribution of the beam
around its focus. The details about our experimental
technique can be found in Refs. [14,15].
For the simulations we use the scalar Unidirectional

Pulse Propagation Equation [16] which corresponds to
Eq. (5) with an additional nonlinear term:

∂Ê
∂z ¼ ikzÊþ i

μ0μω
2

2kz

�
P̂nl þ

i
ω
ðĴf þ ĴaÞ

�
; ð7Þ

where Ê ¼ Êðω; kx; ky; zÞ is the spatiotemporal spectrum
of the laser pulse and the propagation constant
is kz ¼ ½k2ðwÞ − k2x − k2y�1=2. The nonlinear term in
Eq. (7) includes the cubic nonlinear polarization, P̂nl ¼
ð3=4Þε0χ3 ˆjEj2E, the current of free electrons, Ĵf ¼
ðq2e=meÞðνc þ iωÞ=ðν2c þ ω2Þρ̂E, and the current that is

FIG. 2. Normalized intensity distributions of a plane wave
focused by an objective with NA ¼ 0.3. (a) Rigorous vectorial
theory. (b) Scalar wave equation (s ¼ 1). (c) Scalar wave
equation with transformation (s ¼ 1000). (d) Relative on-axis
intensities. Focal position f ¼ 2 mm corresponds to z ¼ 0.

FIG. 3. Normalized intensity distributions of a plane wave
focused by an objective with NA ¼ 1. (a) Rigorous vectorial
theory. (b) Scalar wave equation with s ¼ 1000. (c) Normalized
on-axis intensities. Focal position f ¼ 2 mm corresponds
to z ¼ 0.
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responsible for multiphoton absorption, Ĵa ¼ Kℏω0
c∂ρ
∂t

1
E,

where the caret denotes the spatiotemporal spectrum, ε0 is
the vacuum permittivity, χ3 ¼ 4n20ε0c0n2=3 is the cubic
susceptibility with n2 ¼ 1.5 × 10−18 m2=W being the non-
linear index [17], qe and me are the charge and mass of the
electron, νc ¼ 0.3 × 1015 s−1 is the collisions frequency
[18], ρ is the concentration of free electrons (in 1=m3), and
K ¼ 2 is the order of the multiphoton absorption. Together
with Eq. (7) we solve the kinetic equation for ρ:

∂ρ
∂t ¼ R1ðIÞðρnt − ρÞ þ R2ðIÞρ; ð8Þ

where ρnt ¼ 5 × 1028 1=m3 is the concentration of neutral
atoms in silicon, with R1 ¼ σKIK and R2 ¼ σðω0ÞI=Ui
being the optical field and avalanche ionization rates, where
I ¼ n0ε0c0jEj2=2 is the pulse intensity, σK is the cross
section of the multiphoton ionization, or βK ¼
Kℏω0σKρnt ¼ 0.8 × 10−11 m=W is the cross section
of the multiphoton absorption (adjusted within a range
of reported values [17,19] to better fit the measurements),
σðω0Þ ¼ ð2q2e=men0ε0c0Þ½νc=ðν2c þ ω2

0Þ� is the inverse
Bremsstrahlung cross section, and Ui ¼ 1.12 eV is the
band gap of silicon. To calculate ∂ρ=∂t in the expression
for Ĵa we use only the first term on the right-hand side of
Eq. (8). For the refractive index nðωÞ of silicon we use
Eq. (22) from Ref. [20] with temperature equal to 293 K.
As initial condition for Eq. (7) we take a flattop beam

with the Gaussian temporal profile (similar to our exper-
imental conditions):

Eðt; x; y; z ¼ 0Þ ¼ Θða − rÞ exp
�
−
ðtþ dtÞ2

2t20

�

× exp

�
−ik0

r2

2f
− iω0t

�
; ð9Þ

where ω0 is the central frequency, k0 ¼ n0ω0=c0, and
n0 ¼ nðω0Þ. The spatially dependent temporal delay
dtðrÞ ¼ n0r2=2fc0 in Eq. (9) takes into account that the
thickness of the objective lens decreases from the center to
the edges. Thus, when a beam passes through the objective
its central part becomes delayed relative to its periphery
[21]. During the propagation towards the focus, the
temporal delay decreases and at the focus all parts of the
beam arrive at the same time. For an objective with aperture
a, the maximum temporal delay is given by dtðaÞ ¼ NA ×
a=2c0 [see Eq. (1)]. In the simulations we use the following
parameters: λ0¼1300nm, t0¼60=ð2 ffiffiffiffiffiffiffi

ln2
p Þ fs, f ¼ 1 mm,

and the objective’s aperture a is calculated by Eq. (1) for
each specific NA in the experiment. The initial energy of
the pulse is 10 nJ, that is, 1 order of magnitude higher than
the nonlinear absorption threshold found under similar
conditions [22].

In the simulations of ultrashort laser pulses, we need to
take into account the dispersion of the refractive index n
and for this the corresponding transformation is

nsðωÞ ¼
nðωÞ − nðω0Þ

s
þ snðω0Þ; ð10Þ

where ω0 is the central frequency of the pulse. The first
term on the right-hand side of Eq. (10) describes the
squeezing of the dispersion curve (which provides
the appropriate scaling of the dispersion lengths), and
the second one the subsequent scaling. For complex
nðωÞ ¼ n0ðωÞ þ in00ðωÞ, Eq. (10) should be nsðωÞ ¼
f½n0ðωÞ − n0ðω0Þ�=sþ sn0ðω0Þg þ if½n00ðωÞ − n00ðω0Þ�=sþ
n00ðω0Þ=sg.
In order to apply the transformation approach to Eq. (7),

we follow the same procedure as in the previous section,
namely, using Eq. (10) with s ¼ 1000 we modify the
propagation constant kz and scale up by s times each step
along the propagation axis. Note that we need to transform
n only in the propagation constant kz. Any inclusions of the
refractive index in the expressions for nonlinear terms must
be unchanged in order to preserve the impact of non-
linearities. After this transformation the nonlinear scalar
wave equation still describes an equivalent problem, since
the length, at which phase and amplitude increments
induced by nonlinearities transform the field, is fully
determined by the propagation constant kz.
Figure 4 shows distributions of the fluence, Fðx; zÞ ¼R jEðt; x; y ¼ 0; zÞj2dt, measured in the experiment for

objectives with different NA and simulated with the
transformation approach. As one can see, not only the
shape, but also the absolute values of the simulated fluence
are very close to the experimental results. As an additional

FIG. 4. Fluence distributions of an ultrashort laser pulse
focused in silicon by objectives with different NAs. (a),(b)
Experiments. (c),(d) Simulations with the transformation ap-
proach. (e),(f) Comparison of the on-axis fluences Fðx ¼ 0; zÞ.
Focal position f ¼ 1 mm corresponds to z ¼ 0.
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test for the transformation approach we also simulated the
above problem in the case of a very low NA (where
the propagation is paraxial), first without and then with the
transformation, and found no difference in the results (not
shown here).
Since the refractive index of silicon is high (n0 ¼ 3.51)

the effective values of NA in Fig. 4 are relatively low, so in
order to further prove the impact of the transformation
approach we separately simulated the same nonlinear
problem but with NA ¼ 1.05 that corresponds to NA ¼
0.3 in vacuum. Figure 5 shows the fluence distributions
simulated with and without the transformation. In Fig. 5(b)
we see that without the transformation one obtains a
fluence distribution that is strongly distorted. Thus, all
of the above examples allow us to conclude that with our
transformation approach we can accurately simulate the
tight focusing of ultrashort laser pulses in nonlinear media.
Conclusions.—In conclusion, we have demonstrated a

robust and elegant solution to the problem of simulations of
tightly focused ultrashort laser pulses in nonlinear media.
Our solution allows one to perform fast simulations of the
tight focusing with only scalar wave equations. The
original nonparaxial problem is mapped on a problem in
a medium with higher refractive index, where the propa-
gation becomes paraxial. This solution can be applied for
beams of arbitrary shape and for arbitrary focusing geom-
etries. We demonstrated the validity of our solution both on
linear and nonlinear problems against vectorial theory as
well as nonlinear propagation experiments and showed that
the obtained results are very accurate even in the case of
extremely tight focusing. Our solution is expected to enable
access to challenging problems of extreme spatiotemporal
localization of light energy and their application in different
fields, including materials science, plasma physics, and
biomedicine, which were until now practically inaccessible.
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