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We generalize the state-of-the-art perturbative equation of state of cold quark matter to nonzero
temperatures, needed in the description of neutron star mergers and core collapse processes. The new result
is accurate toOðg5Þ in the gauge coupling, and is based on a novel framework for dealing with the infrared
sensitive soft field modes of the theory. The zero Matsubara mode sector is treated via a dimensionally
reduced effective theory, while the soft nonzero modes are resummed using the hard thermal loop
approximation. This combination of known effective descriptions offers unprecedented access to small but
nonzero temperatures, both in and out of beta equilibrium.
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Introduction.—The recent discovery of gravitational
waves emitted by two merging black holes by the LIGO
and Virgo collaborations has opened up a new observa-
tional window in astrophysics [1]. It is expected that, in the
near future, a similar signal will be detected from the
merger of two neutron stars or a neutron star and a black
hole, or from a supernova explosion. This would lead to a
wealth of new information about the properties of neutron
stars and the matter they are composed of [2], highlighting
the need to understand the material properties of dense
nuclear matter from its microscopic description.
Figuring out the properties of dense nuclear and quark

matter is a notoriously difficult task, as it necessitates a
nonperturbative treatment of the theory of strong inter-
actions, QCD, at large baryon chemical potentials μB [3].
At the moment, the equation of state (EOS) of zero-
temperature nuclear matter is under control up to roughly
the nuclear saturation density, ns ≈ 0.16=fm3 [4], beyond
which it is typically approximated by a polytropic EOS [5].
As recently demonstrated [6,7], the properties of these
polytropes can furthermore be significantly constrained
using the perturbative EOS of zero-temperature quark
matter [8], known up to order g4 ¼ ð4παsÞ2 in the strong
coupling constant (see also Refs. [9–11]).
For quiescent neutron stars, the approximation of work-

ing at exactly zero temperature is typically rather good. In
the description of violent phenomena, such as neutron star
mergers, thermal corrections to the EOS are, however,
absolutely essential to include, as temperatures up to
∼100 MeV may occur [12]. It therefore becomes necessary
to also account for finite-T effects in the properties of quark

matter using perturbation theory—a task complicated by
nonlinear infrared (IR) dynamics.
The reason for the appearance of IR problems in

perturbative calculations lies in the medium modifications
that long wavelength excitations receive. In order to
identify the modes needing nonperturbative treatment,
consider the dispersion relation of gluon fields [13], which
has the parametric form −ω2 þ k2 þ Πðω; kÞ ¼ 0, with Π
representing a given component of the one-loop polariza-
tion tensor. This quantity has the parametric order of the in-
medium screening mass,

m2
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; ð1Þ

where μf stand for the quark chemical potentials. For the
majority of modes, k ≫ mE, and medium modifications
represent only a small perturbation to the dispersion
relation, implying that a “naive” weak coupling (loop)
expansion in g2 can be carried out. However, when the
medium modification becomes an Oð1Þ effect, i.e.,
−ω2 þ k2 ≲m2

E, it must be treated nonperturbatively.
In the evaluation of bulk thermodynamic quantities, ω

takes values at imaginary Matsubara frequencies iωn, with
ωn ¼ 2πnT for bosons and ð2nþ 1ÞπT − iμf for fermions.
For T ≫ mE, it is only the bosonic n ¼ 0mode that must be
treated nonperturbatively, using either the dimensionally
reduced (DR) effective theory electrostatic QCD (EQCD)
[14–16] or the hard thermal loop (HTL) framework [17,18].
This has led to anOðg6 ln gÞ result for the high-temperature
EOS [10,19], as well as a significant improvement of the
convergence of the weak coupling expansion [20–25]. At
lower temperatures, in particular when T becomes of order
mE ∼ gμB, an increasing set of low-lying Matsubara modes,
however, needs to be resummed. This poses a problem,
which has been tackled in the regime T ∼ gxμB, x > 1,
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by the hard dense loop (HDL) approach, revealing non-
Fermi liquid behavior [26–29].
At present, the onlyOðg4Þ result available for the EOS at

all temperatures is based on a tour-de-force resummation
that applies the one-loop gluon polarization tensor of the
full theory [30]. This calculation made no use of the fact
that even at low temperatures only soft gluon modes that
need to be resummed, or that the self-energies obtain their
dominant contributions from the hard scale, i.e., from HTL
kinematics. This resulted in a cumbersome numerical
result, only worked out for three massless quark flavors
at equal chemical potentials.
In this Letter, we make use of the two effective

descriptions for the soft sector of QCD mentioned
above—EQCD and hard thermal loops—to formulate a
simple framework for determining bulk thermodynamic
quantities at all values of T=μB. In particular, this develop-
ment improves the current situation in the region of small
but nonzero temperatures, which now becomes smoothly
connect ed to the limits of T ¼ 0 and T ≳ μB.
Methodology.—Consider the weak coupling expansion

of the QCD pressure as a function of the temperature T and
the quark chemical potentials μf. Denoting by pres

QCD an
expression for the quantity, where sufficient resummations
have been carried out so that the result contains all
contributions up to the desired order in g, we may add
and subtract from it a function pres

soft. This term is defined as
the resummed contribution of all soft modes requiring
nonperturbative treatment, such that the difference
pres
QCD − pres

soft only contains contributions from hard modes.
This implies that we may evaluate both terms in the
difference in a naive loop expansion [31], giving

pres
QCD ¼ pres

QCD − pres
soft þ pres

soft ¼ pnaive
QCD − pnaive

soft þ pres
soft: ð2Þ

Despite its trivial appearance, this relation contains a
remarkable simplification, as it expresses the contribution
of the hard modes through a loop expansion, available in
the literature [10]. This reduces the problem of evaluating
the EOS to properly identify the soft sector, as well
determining the functions pres

soft and pnaive
soft .

A useful feature of the above formulation is that Eq. (2)
is insensitive to the exact definition of the “soft” sector as
long as it contains all the modes that need to be resummed.
Should some hard contributions be included in pres

soft, they
get subtracted by pnaive

soft , removing any possible overcount-
ings. A minimal description of the soft physics, applicable
at all temperatures and densities, is to handle the static
(n ¼ 0 bosonic) sector via the dimensionally reduced
effective theory EQCD [16], while treating the nonstatic
modes with k ∼mE using a HTL expansion [32]. This
allows us to write Eq. (2) in the form

pQCD ¼ pnaive
QCD þ pres

DR − pnaive
DR|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

pcorr
DR

þ pres
HTL − pnaive

HTL|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
pcorr
HTL

; ð3Þ

where it is understood that the HTL formulation is only
used for the nonstatic modes. We have also defined two UV
finite functions, pcorr

DR and pcorr
HTL, which will turn out very

convenient for our discussion. In accordance with Ref. [30],
we shall observe that the HTL sector only contributes in the
regime of low temperatures, T ≲mE, and that the DR
resummation alone suffices for larger values of T. In the
following, we briefly discuss the three parts of Eq. (3).
Naive QCD pressure.—As noted above, the term pnaive

QCD is
obtainable through a strict loop expansion of the pressure
within the full theory. Its definition thereby coincides with
that of the parameter pE of EQCD [16], which has been
determined up to three-loop, or g4, order at all T and μ in
Refs. [10,33], utilizing techniques developed in Ref. [34].
The result can be directly read off from Eqs. (3.6)–(3.14) of
Ref. [10], in which a typo was later spotted and corrected
in Ref. [35]. The somewhat lengthy expressions for
pnaive
QCD and its low-temperature limit are reproduced in the

Supplemental Material [36].
It should be noted that pnaive

QCD contains in principle both
UV and IR divergences. The UV poles are removed by
renormalization and are not visible in the result. The IR
divergences are, on the other hand, physical, and cancel
against equal but opposite ones in pcorr

DR and pcorr
HTL. The IR

divergences that cancel against those of pcorr
DR are the 1=ϵ

terms on the first two lines of Eq. (13) of Ref. [36] (we
work in the MS scheme in d ¼ 3 − 2ϵ spatial dimensions,
applying dimensional regularization). At the same time, the
IR sensitivity of pnaive

QCD that cancels against pcorr
HTL is

manifested in the lnT term in Eq. (16) of Ref. [36],
diverging as T → 0.
Dimensionally reduced term.—The function pres

DR
denotes the contribution of the Matsubara zero mode sector
to the pressure, and can be evaluated using a combination
of a weak coupling expansion within the effective theory
EQCD as well as three-dimensional lattice simulations that
become necessary at order g6 [37–39]. For consistency, we
shall only quote the (analytically known) result to Oðg5Þ
here, as other contributions of Oðg6Þ are in any case
missing from our result. This produces

pres
DR=T ¼ dA

12π
m3

E

þ dACA

ð4πÞ2 g
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4
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�
−
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24
−
π2

6
þ 11

6
ln 2

�
; ð4Þ

where Λ̄ is the renormalization scale and dA ≡ N2
c − 1,

CA ≡ Nc. The leading-order result for mE is given in
Eq. (1), while the EQCD gauge coupling gE has the form
g2E ¼ g2T þOðg4Þ. Higher-order corrections to these
parameters are available in Ref. [10].
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The 1=ϵ pole on the second line of Eq. (4) is of UV
nature. It coincides with the UV divergence of the unre-
summed function pnaive

DR , thus making the combination pcorr
DR

UV safe. It, however, turns out that pnaive
DR also contains an

equal but opposite IR divergence (identifiable with that of
pnaive
QCD) and, moreover, completely vanishes in dimensional

regularization where the same parameter ϵ is used to
regulate both UV and IR divergences [40]. To this end,
we are left with the identity pcorr

DR ¼ pres
DR, where the 1=ϵ

divergence of the function is now identified as an IR pole.
HTL contributions.—The resummed HTL contribution

to the pressure takes the form of the familiar “HTL ring
sum” integral [32],

pres
HTL ¼ −

ðd − 1ÞdA
2

XZ 0

K
log

�
1þ ΠTðKÞ

K2

�

−
dA
2

XZ 0

K
log

�
1þ ΠLðKÞ

K2

�
; ð5Þ

where the primes remind us of the fact that the zero mode is
to be left out from the corresponding Matsubara sums. The
functions ΠT=L stand here for the transverse and longi-
tudinal HTL self-energies,

ΠTðKÞ
K2

¼ m2
∞

K2
−
1

2
ΠHTLðKÞ; ð6Þ

ΠLðKÞ
K2

¼ ΠHTLðKÞ; ð7Þ

with m2
∞ ≡m2

E=ðd − 1Þ and (in exactly three dimensions)

ΠHTLðω; kÞ ¼ m2
E

�
1

k2
−

ω

2k3
log

�
ωþ i0þ þ k
ωþ i0þ − k

��
: ð8Þ

The corresponding naive HTL contribution is, on the other
hand, obtained by simply expanding the logarithms of
Eq. (5) in powers of the self-energies, which produces

pnaive
HTL ¼ −dA

XZ 0

K

�
d − 1

2

ΠT
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þ 1

2
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−
1

2

�
d − 1

2
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T

ðK2Þ2 þ
1

2

Π2
L

ðK2Þ2
��

þOðg6Þ: ð9Þ

The functions pres
HTL and p

naive
HTL are clearly both IR finite at

nonzero T, but contain UV divergences that, however,
cancel in the combination pcorr

HTL defined in Eq. (3). The
numerical evaluation of this function follows the treatment
of Ref. [32] and is briefly discussed in the Supplemental
Material [36]. The result takes the form

pcorr
HTL ¼ dAm4

E

256π2
fHTLðT=mEÞ; ð10Þ

where the numerically determined function fHTL, displayed
in Fig. 1, has the limiting values

fHTLðxÞ !
x→0

4 ln xþ 11 − 4γ −
2π2

3
þ 14 ln 2

3

þ 16ln22
3

þ 4 ln π − δ −
64π

3
x

−
32π2

9
x2
�
ln x − ln

4

π
− γ þ ζ0ð2Þ

ζð2Þ
�

þOðx8=3Þ; ð11Þ

fHTLðxÞ !
x→∞

−
0.006178ð1Þ

x2
þOð1=x3Þ; ð12Þ

with δ ≈ −0.8563832 [10]. Some higher-order terms to the
former expansion can be obtained from Refs. [28,29].
Results.—At this point, we have evaluated all three parts

of pQCD in Eq. (3), i.e., pnaive
QCD, p

corr
DR ¼ pres

DR, and pcorr
HTL.

Below, we briefly discuss the structure of this combination
in two different regimes: T ≫ mE and T ≲mE, or high and
low temperatures, respectively.
High temperatures.—When T is parametrically larger

than mE, in particular, ofOðμBÞ, we see from Eqs. (10) and
(12) that the HTL contribution to the pressure becomes of
Oðg6Þ and is thus no longer interesting for us. This is a
manifestation of the fact that the HTL resummation was
only carried out for the nonzero Matsubara frequencies,
which all become hard modes at high T. Recalling further
that we may associate pnaive

QCD and pres
DR with the functions pE

and pM of EQCD, we see that our result exactly reduces to
the known high-temperature one of Ref. [10], worked out
up to and including Oðg6 ln gÞ there.
Low temperatures.—Proceeding to the opposite T → 0

limit, the naive QCD contribution to the pressure reduces to
Eqs. (14)–(16) of Ref. [36], while the three terms of pres

DR,
visible in Eq. (4), are suppressed by factors of OðTÞ,
OðT2Þ, and OðT3Þ, respectively. Adding to this the first
orders of the low-temperature expansion of the HTL
contribution, Eq. (11), we witness the cancellation of the
lnT terms of pnaive

QCD and pcorr
HTL, while the other terms

surviving in the T ¼ 0 limit exactly reproduce the well-
known result of Refs. [9,10]. The leading correction to this
expression turns out not to be of linear order in T, as the
OðTÞ contributions to pres

DR and pcorr
HTL cancel each other, but

the lowest nonvanishing corrections are of OðT2 lnTÞ.
These logarithmic terms have been thoroughly analyzed
in Refs. [28,29]. Interestingly, at higher orders in the
expansion of the low-T pressure, the Oðg4Þ correction to
m2

E produces a contribution of order g5T lnT through the
first term of Eq. (4). We expect, however, that this Oðg6Þ
term gets canceled by a similar correction to the HTL term
of Eq. (10).
A crucial feature of our new EOS is that, due to its simple

form, it is immediately amenable for numerical evaluation,
as well as for a resummation along the lines of
Refs. [21,22]. Studying first the generic form of the
pressure for Nc ¼ Nf ¼ 3, we display in Fig. 2 the smooth
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interpolation of our result between the low-temperature
HDL approximation of Ref. [29] and the high-temperature
EQCD result of Ref. [10], when the root mean square (rms)
of the scales T and μB=ð3πÞ is set to 1 GeV, and the
temperature is increased.
In Fig. 3, we next look at the form of our result for fixed

values of the temperature, T ¼ 50, 100, 150, and 200 MeV.
Shown here are also the effects of varying the MS
renormalization scale Λ̄ by a factor of 2 around the rms
of the commonly used μB ¼ 0 and T ¼ 0 scales Λ̄ ¼
0.723 × 4πT [19] and Λ̄ ¼ 2μB=3 [8]. Just like in Fig. 2,
we have applied here the two-loop running coupling and
the value 378 MeV for ΛQCD. The fast increase of the
uncertainty of the result at small values of μB signifies the
breakdown of the weak coupling expansion.
Finally, it should be noted that we have used the leading-

order m2
E in generating both Figs. 2 and 3, implying that in

the high-T limit there is a relativeOðg5Þ error in the results.
This would be simple to correct by including the Oðg4Þ
correction to m2

E at high T.
Discussion.—It is well known that small but non-

vanishing temperatures pose a technical problem for weak

coupling expansions in dense quark matter. In this regime,
it no longer suffices to treat only the static sector of the
theory nonperturbatively, but the technical simplifications
associated with the T ¼ 0 limit are not available either.
While temperatures parametrically smaller than mE have
been extensively studied [26–29], a connection to
temperatures of order μB has been established only on a
proof-of-principle level [30], and no EOS amenable to
phenomenological applications exists.
In this Letter, we have addressed the challenge of small

temperatures by formulating a new framework for high-
order weak coupling calculations in deconfined QCD
matter. Making use of known effective descriptions for
the static and soft nonstatic sectors, we have derived a
semianalytic expression for the EOS, valid up to and
including order g5 at all values of T=μB. The fact that
our approach utilizes the framework of dimensional
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FIG. 1. The behavior of the function fHTLðxÞ, defined in
Eq. (10). Shown here are also the first three orders of the
small-T expansion as well as the leading high-T limit, as
indicated by Eqs. (11) and (12).
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Boltzmann) limit, evaluated for a fixed value of the function
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Ref. [10], the green dotted line for the HDL result of Ref. [29],
and the single blue dot for the T ¼ 0 limit of Refs. [9,10]. The
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variation of the renormalization scale Λ̄, as explained in the main text. The dashed blue lines indicate the corresponding Oðg4Þ result at
zero temperature [9,10].

PRL 117, 042501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
22 JULY 2016

042501-4



reduction to account for the static sector was shown to lead
to a smooth interpolation of the pressure between known
state-of-the-art results at low and high temperatures, as well
as to a rapid convergence with increasing T. The new result
is, in addition, not restricted to beta equilibrium, but is a
function of independent quark chemical potentials.
At exactly zero temperature, the state-of-the-art pertur-

bative EOS of quark matter [8] has been widely used to
describe the ultradense matter found inside neutron stars.
The present work generalizes this result to nonzero temper-
ature, which should lead to a reduction in the uncertainty of
the EOSs used to model neutron star mergers. One concrete
possibility to achieve this is to follow the strategy of
Ref. [6] in deriving constraints for the behavior of the EOS
at moderate density by requiring that it approaches the
perturbative quark matter limit at high densities. We shall,
however, leave such applications of our result, as well as its
obvious extensions to nonzero quark masses [41] and more
economical parametrizations [42], for future work.
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the Academy of Finland, Grant No. 273545.

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[2] N. Andersson, V. Ferrari, D. I. Jones, K. D. Kokkotas, B.
Krishnan, J. S. Read, L. Rezzolla, and B. Zink, Gen. Relativ.
Gravit. 43, 409 (2011).

[3] N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014).
[4] I. Tews, T. Krger, K. Hebeler, and A. Schwenk, Phys. Rev.

Lett. 110, 032504 (2013).
[5] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,

Astrophys. J. 773, 11 (2013).
[6] A. Kurkela, E. S. Fraga, J. Schaffner-Bielich, and A.

Vuorinen, Astrophys. J. 789, 127 (2014).
[7] E. S. Fraga, A. Kurkela, and A. Vuorinen, Eur. Phys. J. A

52, 49 (2016).
[8] A. Kurkela, P. Romatschke, and A. Vuorinen, Phys. Rev. D

81, 105021 (2010).
[9] B. A. Freedman and L. D. McLerran, Phys. Rev. D 16, 1169

(1977); V. Baluni, Phys. Rev. D 17, 2092 (1978).
[10] A. Vuorinen, Phys. Rev. D 68, 054017 (2003).
[11] E. S. Fraga, R. D. Pisarski, and J. Schaffner-Bielich, Phys.

Rev. D 63, 121702 (2001).
[12] H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Nucl.

Phys. A637, 435 (1998).
[13] The fermionic case proceeds in a qualitatively similar way.

It, however, turns out that to the order we are working in, no
resummation is required.

[14] T. Appelquist and R. D. Pisarski, Phys. Rev. D 23, 2305
(1981).

[15] K. Kajantie, M. Laine, K. Rummukainen, and M. E.
Shaposhnikov, Nucl. Phys. B458, 90 (1996).

[16] E. Braaten and A. Nieto, Phys. Rev. D 51, 6990 (1995).

[17] E. Braaten and R. D. Pisarski, Nucl. Phys. B337, 569
(1990).

[18] E. Braaten and R. D. Pisarski, Phys. Rev. D 45, R1827
(1992).

[19] K. Kajantie, M. Laine, K. Rummukainen, and Y. Schröder,
Phys. Rev. D 67, 105008 (2003).

[20] J. P. Blaizot, E. Iancu, and A. Rebhan, Phys. Rev. D 63,
065003 (2001).

[21] J. P. Blaizot, E. Iancu, and A. Rebhan, Phys. Rev. D 68,
025011 (2003).

[22] M. Laine and Y. Schroder, Phys. Rev. D 73, 085009 (2006).
[23] J. O. Andersen, L. E. Leganger, M. Strickland, and N. Su,

J. High Energy Phys. 08 (2011) 053.
[24] N. Haque, A. Bandyopadhyay, J. O. Andersen, M. G.

Mustafa, M. Strickland, and N. Su, J. High Energy Phys.
05 (2014) 027.

[25] S. Mogliacci, J. O. Andersen, M. Strickland, N. Su, and
A. Vuorinen, J. High Energy Phys. 12 (2013) 055.

[26] A. Ipp, A. Gerhold, and A. Rebhan, Phys. Rev. D 69,
011901 (2004).

[27] T. Schaefer and K. Schwenzer, Phys. Rev. D 70, 054007
(2004).

[28] A. Gerhold, A. Ipp, and A. Rebhan, Phys. Rev. D 70,
105015 (2004).

[29] A. Gerhold and A. Rebhan, Phys. Rev. D 71, 085010
(2005).

[30] A. Ipp, K. Kajantie, A. Rebhan, and A. Vuorinen, Phys. Rev.
D 74, 045016 (2006).

[31] M. Laine, A. Vuorinen, and Y. Zhu, J. High Energy Phys. 09
(2011) 084.

[32] J. O. Andersen, E. Braaten, and M. Strickland, Phys. Rev. D
61, 014017 (1999).

[33] A. Vuorinen, arXiv:hep-ph/0402242.
[34] P. Arnold and C. X. Zhai, Phys. Rev. D 50, 7603 (1994); 51,

1906 (1995).
[35] N. Haque, J. O. Andersen, M. G. Mustafa, M. Strickland,

and N. Su, Phys. Rev. D 89, 061701 (2014).
[36] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.117.042501 for the
explicit expression of pQCD and its small-T expansion as
well as a brief account of the numerical determination of
pcorr
HTL.

[37] K. Kajantie, M. Laine, K. Rummukainen, and Y. Schroder,
J. High Energy Phys. 04 (2003) 036.

[38] A. Hietanen, K. Kajantie, M. Laine, K. Rummukainen, and
Y. Schroder, J. High Energy Phys. 01 (2005) 013; A.
Hietanen and A. Kurkela, J. High Energy Phys. 11
(2006) 060.

[39] F. Di Renzo, M. Laine, V. Miccio, Y. Schroder, and C.
Torrero, J. High Energy Phys. 07 (2006) 026.

[40] In the evaluation of the quantity pnaive
DR , the mass term of the

A0 field in EQCD is treated as a perturbation. This leads to
the pressure being expressible in terms of scale-free inte-
grals of the type

R
p½1=ðp2Þn�, which all vanish in dimen-

sional regularization.
[41] E. S. Fraga and P. Romatschke, Phys. Rev. D 71, 105014

(2005).
[42] E. S. Fraga, A. Kurkela, and A. Vuorinen, Astrophys. J. 781,

L25 (2014).

PRL 117, 042501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
22 JULY 2016

042501-5

http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1007/s10714-010-1059-4
http://dx.doi.org/10.1007/s10714-010-1059-4
http://dx.doi.org/10.1140/epjc/s10052-014-2981-5
http://dx.doi.org/10.1103/PhysRevLett.110.032504
http://dx.doi.org/10.1103/PhysRevLett.110.032504
http://dx.doi.org/10.1088/0004-637X/773/1/11
http://dx.doi.org/10.1088/0004-637X/789/2/127
http://dx.doi.org/10.1140/epja/i2016-16049-6
http://dx.doi.org/10.1140/epja/i2016-16049-6
http://dx.doi.org/10.1103/PhysRevD.81.105021
http://dx.doi.org/10.1103/PhysRevD.81.105021
http://dx.doi.org/10.1103/PhysRevD.16.1169
http://dx.doi.org/10.1103/PhysRevD.16.1169
http://dx.doi.org/10.1103/PhysRevD.17.2092
http://dx.doi.org/10.1103/PhysRevD.68.054017
http://dx.doi.org/10.1103/PhysRevD.63.121702
http://dx.doi.org/10.1103/PhysRevD.63.121702
http://dx.doi.org/10.1016/S0375-9474(98)00236-X
http://dx.doi.org/10.1016/S0375-9474(98)00236-X
http://dx.doi.org/10.1103/PhysRevD.23.2305
http://dx.doi.org/10.1103/PhysRevD.23.2305
http://dx.doi.org/10.1016/0550-3213(95)00549-8
http://dx.doi.org/10.1103/PhysRevD.51.6990
http://dx.doi.org/10.1016/0550-3213(90)90508-B
http://dx.doi.org/10.1016/0550-3213(90)90508-B
http://dx.doi.org/10.1103/PhysRevD.45.R1827
http://dx.doi.org/10.1103/PhysRevD.45.R1827
http://dx.doi.org/10.1103/PhysRevD.67.105008
http://dx.doi.org/10.1103/PhysRevD.63.065003
http://dx.doi.org/10.1103/PhysRevD.63.065003
http://dx.doi.org/10.1103/PhysRevD.68.025011
http://dx.doi.org/10.1103/PhysRevD.68.025011
http://dx.doi.org/10.1103/PhysRevD.73.085009
http://dx.doi.org/10.1007/JHEP08(2011)053
http://dx.doi.org/10.1007/JHEP05(2014)027
http://dx.doi.org/10.1007/JHEP05(2014)027
http://dx.doi.org/10.1007/JHEP12(2013)055
http://dx.doi.org/10.1103/PhysRevD.69.011901
http://dx.doi.org/10.1103/PhysRevD.69.011901
http://dx.doi.org/10.1103/PhysRevD.70.054007
http://dx.doi.org/10.1103/PhysRevD.70.054007
http://dx.doi.org/10.1103/PhysRevD.70.105015
http://dx.doi.org/10.1103/PhysRevD.70.105015
http://dx.doi.org/10.1103/PhysRevD.71.085010
http://dx.doi.org/10.1103/PhysRevD.71.085010
http://dx.doi.org/10.1103/PhysRevD.74.045016
http://dx.doi.org/10.1103/PhysRevD.74.045016
http://dx.doi.org/10.1007/JHEP09(2011)084
http://dx.doi.org/10.1007/JHEP09(2011)084
http://dx.doi.org/10.1103/PhysRevD.61.014017
http://dx.doi.org/10.1103/PhysRevD.61.014017
http://arXiv.org/abs/hep-ph/0402242
http://dx.doi.org/10.1103/PhysRevD.50.7603
http://dx.doi.org/10.1103/PhysRevD.51.1906
http://dx.doi.org/10.1103/PhysRevD.51.1906
http://dx.doi.org/10.1103/PhysRevD.89.061701
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.042501
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.042501
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.042501
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.042501
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.042501
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.042501
http://link.aps.org/supplemental/10.1103/PhysRevLett.117.042501
http://dx.doi.org/10.1088/1126-6708/2003/04/036
http://dx.doi.org/10.1088/1126-6708/2005/01/013
http://dx.doi.org/10.1088/1126-6708/2006/11/060
http://dx.doi.org/10.1088/1126-6708/2006/11/060
http://dx.doi.org/10.1088/1126-6708/2006/07/026
http://dx.doi.org/10.1103/PhysRevD.71.105014
http://dx.doi.org/10.1103/PhysRevD.71.105014
http://dx.doi.org/10.1088/2041-8205/781/2/L25
http://dx.doi.org/10.1088/2041-8205/781/2/L25

