
Modular Hamiltonian for Excited States in Conformal Field Theory

Nima Lashkari
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 11 March 2016; revised manuscript received 21 May 2016; published 21 July 2016)

We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal
field theory. Our replica trick is based on the analytic continuation of partition functions that break the Zn

replica symmetry. It provides a method for computing arbitrary matrix elements of the modular
Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum
Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry.
We perform sample calculations in two-dimensional conformal field theories.
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In recent years entanglement theory has found numerous
applications in the study of quantum phases of matter,
relativistic field theories and gravity. Most of these appli-
cations focus on an entanglement measure in bipartite pure
states known as the entanglement entropy. Unfortunately, in
relativistic field theories entanglement entropy suffers from
ultraviolet divergences. In gauge theories the definition of
entanglement entropy is ambiguous [1]. In this Letter,
we present a method to compute, in field theory, another
measure called relative entropy that is provably ultraviolet
finite, universal, and free of gauge ambiguities [1,2].
Relative entropy is a measure of distinguishability

between two states and has nice monotonicity and pos-
itivity properties. It appears naturally in the definition of
entanglement measures for mixed states such as mutual
information and the relative entropy of entanglement [3].
Recently, thinking in terms of relative entropy in quantum
field theories coupled to gravity has led to new develop-
ments such as a proof of the quantum Bousso bound [4],
and the identification of new gravitational positive energy
theorems [5].
The relative entropy of the density matrix ϕ with respect

to ψ is defined to be

Sðϕ∥ψÞ ¼ trðϕ logϕÞ − trðϕ logψÞ: ð1Þ
Note that relative entropy is ill-defined when ψ is pure.
The relative entropy of two states can be thought of as
the expectation value of the difference of the modular
Hamiltonians of the two states

Sðϕ∥ψÞ ¼ hϕjHðψÞ −HðϕÞjϕi
¼ tr½ðϕ − ψÞHðψÞ� − ΔS: ð2Þ

Here the positive Hermitian operator HðψÞ ¼ − logψ is
the modular Hamiltonian of ψ , and ΔS is the difference of
the entanglement entropies of ϕ and ψ . If we formally
define the generalized free energy function FψðϕÞ ¼
tr½ϕHðψÞ� − SðϕÞ, then the relative entropy is the free
energy difference between the two states

Sðϕ∥ψÞ ¼ FψðϕÞ − FψðψÞ: ð3Þ
The function Fψ has all the properties one expects from free
energy in a thermodynamic theory where ψ ¼ e−HðψÞ plays
the role of the equilibrium state [5,6]. Note that Fψ achieves
its minimum on the equilibrium state ψ . [This is a conse-
quence of positivity of relative entropy: FψðϕÞ ≥ Fψ ðψÞ].
In this Letter, we construct a class of field theory

partition functions that is proportional to trðϕψn−1Þ.
Their analytic continuation provides the relative entropy
and the modular Hamiltonian of density matrices in excited
states jϕi and jψi reduced to the subsystem. While the
formalism presented here applies to all quantum field
theories we focus on conformal field theories to have
access to more computational tools.
According to the operator-state correspondence in con-

formal field theory (CFT) there is a one-to-one map
between wave functionals and operators in the Hilbert
space. In radial quantization, the wave functional of an
excited state jψi is found by performing a Euclidean path
integration with the corresponding operator Ψ inserted.
Restricting to subsystem A the state is described by a
density matrix ψA; see Fig. 1. To simplify notation we
suppress the subsystem index A, and use ψ to refer to the
reduced state.
In principle, one can compute the logarithm of the

density matrix directly from the path integral by taking

(a) (b)

FIG. 1. (a) Operator-state correspondence in radial quantization
of conformal field theories. (b) Reduced density matrix corre-
sponds to a path integral with two operator insertions and a cut on
the subsystem.
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the logarithm of a path-ordered operator using the so-called
Magnus expansion; however, in practice this is too hard.
Here, we propose an alternative method to compute matrix
elements of the modular Hamiltonian of excited states
from the analytic continuation of correlation functions. Our
method is a generalization of the replica trick in Refs. [7,8]
to the case where one breaks the Zn symmetry among
replicas. This enables us to compute matrix elements of the
modular operator for all states. This is in contrast with
the old replica method which was restricted to states that
have local modular Hamiltonians, the only known example
of which is vacuum reduced to a half-space or spherical
subsystems [9,10]. (In two-dimensional CFTs, a finite
temperature state on a line also has reduced states with a
local modular Hamiltonian [11]).
Relative entropy and modular Hamiltonian.—Consider

the Hermitian operator fϕ;ψn−1g ¼ 1
2
ðϕψn−1 þ ψn−1ϕÞ

built out of reduced density matrices ϕ and ψ correspond-
ing to global states jϕi and jψi, respectively. Its trace
in conformal field theory corresponds to the n-sheeted
partition function trðϕψn−1Þ. The idea is to take advantage
of the analytic properties of correlators by using the
operator identity

trðϕ logψÞ ¼ ∂nðϕψn−1Þjn→1: ð4Þ

Our partition functions of interest, trðϕψn−1Þ, break the Zn
replica symmetry present in both the Renyi entropy and
Renyi relative entropy replica tricks [8,12]. In contrast
with the symmetric case, our partition functions are not
monotonic in index n, and have no known operational
interpretations. Nonetheless, under the assumption of
analyticity, they provide a computational tool for finding
relative entropies and the diagonal elements of the modular
Hamiltonian of excited states

Sðϕ∥ψÞ¼∂n log

�
trðϕnÞtrðψÞn−1

trðϕψn−1ÞtrðϕÞn−1
�
n→1

hϕjHðψÞ−Hðσ0Þjϕi¼ log

� hϕjσn−10 jϕitrðψÞn−1
hϕjψn−1jϕitrðσ0Þn−1

�
n→1

; ð5Þ

where σ0 is the reduced density matrix in vacuum. We
subtract the vacuum modular Hamiltonian so that we have
ultraviolet finite quantities at any n. The off-diagonal
elements of the modular Hamiltonian are obtained from
its diagonal element in superposition states; see
Supplemental Material [13].
Each of the terms inside the logarithm above can be

expressed as a Euclidean path integration with operator
insertions on a replicated or the original geometry [14]. For
instance, consider the terms trðρψn−1Þ. Sewing n copies of
the density matrix cyclically along the boundary of their
subsystems we obtain n-sheeted replica manifold Rn and
2n operator insertions (Fig. 2)

trðϕψn−1Þ ¼ ZðRnÞhΦðz0nÞΦðznÞOðn−1Þ
Ψ iRn

OðmÞ
Φ ¼

Ym
i¼1

Φðz0iÞΦðziÞ ð6Þ

where zi and z0i are points z and z
0 on the ith sheet ofRn. It

is important to note that plugging Eq. (6) into Eq. (5) all
partition function terms cancel and we are left only with
correlation functions at any n which are free of ultraviolet
divergences.
Written explicitly in terms of correlation functions we

find the main results of this section:

Sðϕ∥ψÞ

¼ ∂n log

� hOðnÞ
Φ iRn

hΨðz01ÞΨðz1Þin−1R1

hΦðz0nÞΦðznÞOðn−1Þ
Ψ iRn

hΦðz01ÞΦðz1Þin−1R1

�
n→1

hϕjHðψÞ −Hðσ0Þjϕi

¼ ∂n log

�hΦðz0nÞΦðznÞiRn
hΨðz01ÞΨðz1Þin−1R1

hΦðz0nÞΦðznÞOðn−1Þ
Ψ iRn

�
n→1

hχjHðψÞ −Hðσ0Þjϕi ¼ ∂n

�
log

�
X−1

Xþ1

�
þ i log

�
X−i

Xþi

��
n→1

where

Xc ¼ EΦΦðOðn−1Þ
Ψ Þ þ jcj2EχχðOðn−1Þ

Ψ Þ
þ cEΦχðOðn−1Þ

Ψ Þ þ H:c:

EΦχðOÞ ¼ hΦðz0nÞχðznÞOiRnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΦðz01ÞΦðz1ÞiR1

hχðz01Þχðz1ÞiR1

q ð7Þ

Here, we have assumed that hψ jϕi ¼ 0.
Quantum Fisher information.—Our replica trick con-

nects the modular Hamiltonian of excited states to analytic
continuation of 2n-point correlation functions. Apart from
integrable models and large central charge theories,
obtaining analytic expressions for 2n-point functions is
an intractable problem. However, as we show in this section

(a) (b)

FIG. 2. (a) Entanglement entropy replica trick: the Euclidean
path integration on the n-sheeted manifold corresponding to the
partition function trðψnÞ. (b) The Zn-breaking partition trðϕψn−1Þ
that appears in our relative entropy replica trick.
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a great simplification occurs once we focus on near-vacuum
states.
Let us first consider a one-parameter family of states

ðjϕiþϵjXiÞ=
ffiffiffiffiffiffiffiffiffiffiffi
1þϵ2

p
perturbed around jϕi in perpendicular

direction jXi. The reduced density matrix on subsystem A
expanded in ϵ has the form

ϕþ ϵρð1ÞX þ ϵ2ρð2ÞX þOðx3Þ:

Relative entropy is a smooth nondegenerate function of
two states. Hence, the relative entropy of two nearby states
expanded in ϵ vanishes to the first order. The coefficient of
the second order term, FϕðX; YÞ, is called the quantum
Fisher information at point ϕ in the space of density
matrices:

Sðϕþ ϵρX∥ϕÞ ¼ ϵ2FϕðX;XÞ þOðϵ3Þ:

This function defines a metric on the space of perturbations
to state ϕ

2FϕðX; YÞ ¼ FϕðX þ Y; X þ YÞ − FϕðX;XÞ − FϕðY; YÞ:

Quantum Fisher information is a local measure of distin-
guishability, and is intimately connected with uncertainty
relations [15]. Consider the relative entropy of two nearby
states. Our replica trick in Eq. (5) implies

FϕðX;XÞ

¼∂n

�
n
Xn−2
m¼0

hfX;ΦgΦ2mfX;ΦgΦ2ðn−m−2ÞiRn
hΦΦiR1

hΦ2niRn
hXXiR1

�
n→1

ð8Þ

where X and Φ denote the operators that create the
perturbations corresponding to jXi and jϕi, respectively.
The location of operator insertions are the same as Eq. (6).
For near vacuum states, we replace Φ in Eq. (8) with the

identity. The quantum Fisher information takes the form of
an analytic continuation of two-point functions on the
replica geometry; see Fig. 3:

FσðX;XÞ ¼ ∂n

� X
z�¼z;z0

KXðzþ; z−Þ
�
n→1

KXðzþ; z−Þ ¼ n
Xn−1
m¼1

hXðzþ1 ÞXðz−mþ1ÞiRn

hXðz0ÞXðz00ÞiR1

: ð9Þ

This implies that in arbitrary dimensions the vacuum
Fisher information of any primary excitation reduced to a
ball or radius R is universal in the sense that it depends only
on energy and subsystem size. In the remainder of this
Letter, we provide examples of relative entropies, modular
Hamiltonians, and quantum Fisher information in two-
dimensional CFTs computed using the method above.
Examples in two dimensions.—Relative entropy of

excited states: Consider a free massless boson CFT in
two dimensions on a circle of radius R and a subsystem at
A ¼ ð−l=2; l=2Þ. We are interested in the excited states
obtained by the action of chiral vertex operators on vacuum
at past infinity: jαi ¼ VαjΩi ¼ eiαϕjΩi, where ϕ is the
boson field. The dimension of this operator is ðh; h̄Þ ¼
ðα2=2; 0Þ. Here x ¼ l=R is the dimensionless parameter.
In the Supplemental Material [13] it is shown that in two
dimensions one can equally use correlators on a cylinder,
full complex plane, or a strip in our formulae in Eq. (7) for
relative entropy and modular Hamiltonian. The conformal
factors found from the change of coordinates vanish in the
limit of n → 1. In a free theory with a nondegenerate
ground state all correlation functions are determined by
Wick’s theorem [16]:

hV−αO
ðn−1Þ
β VαiS ¼ ½2 sinðπx=nÞ�β2ð1−nÞ−α2g−ðn−2Þβ2−2αβn

where S refers to correlators on a strip of width 2π, and
gn ¼ sinðπxÞ=n sinðπx=nÞ. For holomorphic excitations
½Vα�† ∼ V−α. Therefore,

Sðα∥βÞ ¼ ∂n log

� hOðnÞ
α iShV−βVβin−1S

hV−αVαO
ðn−1Þ
β iShV−αVαin−1S

�

¼ ðα − βÞ2½1 − πx cotðπxÞ�: ð10Þ

The analytic continuation used above is justified in the
Supplemental Material [13]. When β ¼ 0 this matches the
result previously found using a Zn-symmetric replica trick
in Ref. [12]: Sðα∥0Þ ¼ α2½1 − πx cotðπxÞ�. Interestingly,
the answer in Eq. (5) is symmetric in its arguments,
Sðα∥βÞ ¼ Sðβ∥αÞ. These excited states further have the
property that SðαÞ ¼ SðβÞ ¼ Sðσ0Þ, where σ0 is the vac-
uum density matrix. Hence, we find trðραHβÞ ¼ trðρβHαÞ
for all α and β.
Modular Hamiltonian of excited states: In the free

c ¼ 1 CFT, Wick contractions imply that a correlator
is zero unless

P
iαi ¼ 0. For all α ≠ γ we have

FIG. 3. The type of two-point functions on the replica manifold
whose analytic continuation determines quantum Fisher infor-
mation in vacuum.
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hV−αVγO
ðn−1Þ
β iS ¼ 0. As a result, Xc in Eq. (7) is inde-

pendent of c, and we find that the modular operator Hβ has
no off-diagonal terms in the jαi basis.
The diagonal elements are

hαjHðβÞ −Hðσ0Þjαi ¼ βðβ − 2αÞ½1 − πx cotðπxÞ�:

Note that in the limit α ¼ β this reproduces −β2½1 −
π cotðπxÞ� ¼ −Sðβjσ0Þ as it should. In the limit β ¼ 0
the difference of modular Hamiltonians is the zero operator
and hence the answer should vanish as it does.
Quantum Fisher metric around the vacuum: Consider

an arbitrary two-dimensional conformal field theory on a
circle. The vacuum Fisher information is given by Eq. (9).
After some algebra we find

FσðX;XÞ ¼ ∂n½2snð0Þ þ snðxÞ þ snð−xÞ�n→1

snðxÞ ¼
�
sin2ðπxÞ

n2

�
hþh̄

n
Xn−1
m¼1

sin ½πðmþ xÞ=n�−2ðhþh̄Þ:

For simplicity we expand in small x to find

Fσ ≃ ∂n

�
4

�
πx
n

�
2ðhþh̄Þ

n
Xn−1
m¼1

sinðπm=nÞ−2ðhþh̄Þ
�
n→1

¼ 2ðπxÞ2ðhþh̄Þ ffiffiffi
π

p
Γðhþ h̄þ 1Þ

Γðhþ h̄þ 3
2
Þ ; ð11Þ

where we have used the analytic continuation found
in Ref. [17].
Multiple intervals: The replica trick developed here can

be applied to subsystems with multiple intervals. As an
example we focus on mutual information in vacuum

SðσAB∥σA ⊗ σBÞ ¼ IðA∶BÞ; ð12Þ

where A and B are nonoverlapping intervals. According to
Eq. (5), the relative entropy is the analytic continuation of
the vacuum partition functions on manifolds ZAB

n and ZA;B
n

illustrated in Fig. 4

IðA∶BÞ ¼ lim
n→1

1

n − 1
ðlogZAB

n − logZA;B
n Þ: ð13Þ

The first partition function ZAB
n corresponds to Renyi

entropies of σAB. Therefore, from Eq. (12) all we need
to check is

∂nZ
A;B
n jn→1 ¼ SðAÞ þ SðBÞ: ð14Þ

The Riemann-Hurwitz formula tells us that ZAB
n has genus

(n − 1) and ZA;B
n is simply the Riemann sphere. Following

Ref. [18] we compute the path integral over these manifolds
using twist operators in an orbifold theory with replica
copies of the fields. In particular, up to normalization ZA;B

n

is the correlation function

hσð1���nÞðuAÞσðn���1ÞðvAÞσðn���2n−1ÞðuBÞσð2n−1���nÞðvBÞi
in a ð2n − 1Þ replica theory. Here uA and vA are the
endpoints of interval A, and going around the twist operator
σð1���mÞ the replica fields transform as ðX1; X2 � � �Xm; Xmþ

1 � � �X2n−1Þ → ðX2; � � �Xm; X1; Xmþ1 � � �X2n−1Þ. Inserting
a resolution of the identity on the nth sheet splits the
correlator into a sum over the product of sphere one-point
functions. (see Fig. 5). The sphere one-point function is
zero unless Φk is the identity operator. In other words,

SA;Bn ¼ SAn þ SBn ð15Þ
which is the sum of Renyi entropies of intervals A and B,
and hence Eq. (14) follows.
Discussion.—In this Letter, we have developed a replica

trick that takes advantage of breaking the replica symmetry
to access the modular Hamiltonian of excited states. In the
absence of the Zn replica symmetry Renyi entropies are
not monotonic in n; hence, our method cannot be used to
obtain lower or upper bounds on relative entropy. The
applicability of this method crucially relies on our ability to
analytically continue correlation functions in n. According
to the Carlson theorem [19], in order to find the unique
analytic continuation of Renyis at integer n one needs to
further fix the behavior at n → �i∞. We postpone a careful
study of this asymptotic choice and its physical implica-
tions to future work.

(a) (b)

FIG. 4. (a) The n-sheeted manifold corresponding to the
partition function ZAB

n . (b) The Zn-breaking partition ZA;B
n ¼

tr½σABðσA ⊗ σBÞ⊗n−1�.
FIG. 5. Inserting the resolution of the identity in ZAB

n , we
observe that at each K we multiply sphere one-point functions
that are zero unless ΦK is the identity.
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The correlation functions needed to compute the
modular operator of an excited state are 2n-point func-
tions. There are not many examples of CFTs for which
we have access to high-point correlators. One class of
such CFTs is free theories which we briefly discussed.
Another class is CFTs with large central charge, where
one can reduce the calculation of n-point functions
of heavy operators to a classical monodromy problem
for differential equations that correlation functions
satisfy [20].
In holographic theories, the vacuum Fisher information

in spherical subsystems was recently shown to be dual to
canonical energy in gravity [21]. This confirms the uni-
versal feature suggested by Eq. (9). It would be interesting
to understand the connection between the CFT calculation
of this quantity and canonical energy in the bulk.
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