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The cochlea provides a biological information-processing paradigm that we are only beginning to
understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical
nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-
law size statistics (“avalanches”). From dynamical systems theory, power-law size distributions relate to a
fundamental ground state of biological information processing. Learning destroys these power laws. These
results strongly modify the models of mammalian sound processing and provide a novel methodological
perspective for understanding how the brain processes information.
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The mammalian neocortex has recently been suggested
to host neuronal activation avalanches [1–3] of power-law-
distributed size. Evidence from simulated synchronizing
phase oscillator networks [4,5] and other models [6–9]
supports this suggestion; however, the methods underlying
the experimental results are delicate, and most of the
models use strongly simplified neuronal dynamics or
implement particular balance conditions. Because ava-
lanches were related to a critical state in cortex, which
has opened a discussion on the significance of such a
potential state regarding information propagation and
processing capacity [3,6,9–12], additional supporting evi-
dence would be desirable.
The mammal’s hearing sensor, the cochlea, can be seen

as an information-processing antecedent of the neocortex
that avoids most of the mentioned experimental and theory
difficulties. In essence, the cochlea consists of a continu-
ous, fluid-embedded stiffness-graded sensorial basilar
membrane coiled to a snail-shaped form. Its physical basis
has recently become well understood, from a combination
of mostly linear hydrodynamics and nonlinear amplifier
physics [13,14]. To understand how this relates to a discrete
network, we focus on the signal pathway. A pure tone
(sound containing only one frequency) arriving at the
mammalian cochlea elicits on the basilar membrane one
shallow surface wave that travels down the membrane to its
“resonant place.” Here, the wave becomes strongly ampli-
fied, by frequency-specific nonlinear active units (the so-
called outer hair cells). Beyond this point, dissipation by
fluidal viscous losses annihilates the wave [13,14]. The
relationship between the frequency and the place of
strongest amplification, measured from the basilar mem-
brane’s base, is near-logarithmic. On the logarithmic
frequency scale, the interval across which a pure-tone
signal is noticeably amplified is essentially of constant
size [Supplemental Material Fig. S1(a) [15]], which

suggests a natural partition of the cochlea into sections.
These sections provide the nodes of our network.
Based on the detailed biophysics and nonlinear

dynamics at work in the cochlea [13,14], we developed
a model of the sensor consisting of such sections [16–18].
This model reproduces virtually all mesoscopic biophysical
cochlear observations ([16–20]; in particular Supplemental
Material of Refs. [16,18,19]). Fundamental for this is that
the sections share the dynamical properties of the micro-
scopic amplification-providing outer hair cells [14,21],
which is well modeled by a stimulated Hopf process:

_z ¼ ðμþ iÞωchz − ωchjzj2z − ωchFðtÞ; z; FðtÞ ∈ C;

where zðtÞ denotes the response amplitude, FðtÞ is a
stimulation signal, wch is the characteristic frequency
of the Hopf system, and μ is the Hopf parameter
[13,14,21–23]. At values μ < 0, the system is below
bifurcation to self-oscillation but responds towards stimu-
lation signals FðtÞ as a small-signal amplifier [24,25].
Dissipation by fluidal viscous losses can be described by
tailored sixth-order Butterworth low-pass filters [17,18].
The main characteristics of the isolated node dynamics are
collected in Fig. 1. When embedded into a compound
cochlea, the response profiles broaden due to the sections’
interaction with neighboring ones, reproducing the bio-
logical data [26] extremely well [17]. The distance of μ
from bifurcation at μ ¼ 0 defines how strongly a node
amplifies an incoming signal; we choose this parameter to
match the human hearing sensor. The biophysical proper-
ties of the cochlea suggest selecting the characteristic
frequencies of the nodes according to a geometric
sequence. We will use a software implementation of an
earlier hardware realization of 29 sections or nodes, taking
care of seven octaves (14.08–0.11 kHz). Our partition is
optimal in the sense that finer partitions yield for the human
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amplification range identical results, but coarser partitions
lead to distortions in the frequency dependence, if suffi-
ciently strong amplification is required (Supplemental
Material Fig. S2 [15]). All nodes will have identical
Hopf parameters (flat tuning μ≡ −0.25), until we deal
with learning, where we condition the network towards
chosen sounds, by tuning unsuited nodes towards weaker
amplification [16]. A detailed account on the design of the
used cochlea is provided in Supplemental Material
Sec. 6 [15].
Given an input signal of arbitrary form, a node is defined

to be activated if the amplified signal at the node reaches
above a threshold of −50 dB. (Matching the response
curves of the biophysical example with those of the Hopf
cochlea suggests that 0 dB sound pressure level (SPL) in
biology corresponds to about −114 dB input to the Hopf
cochlea. A 10 dB SPL input, which characterizes the
hearing threshold for the most sensitive part of the human
frequency range [27], then corresponds to a −104 dB input
to the Hopf cochlea, generating a response of about
−50 dB.) Other choices of the threshold within a
�10 dB bandwidth (including, in particular, the −53 dB
value used for the reproduction of the experimental data of
combination-tone hearing experiments in Ref. [16]) did not
affect any of the following results. While pure-tone
stimulations lead to essentially one activated node, all
other (even simple) stimuli lead to complex activation
response patterns. In addition to the directly activated nodes
(network “roots”), nodes become activated as the result of
the nonlinear interactions among already activated nodes:
Interacting “parent nodes” of frequencies f1 and f2 activate
“child nodes” further down the cochlear duct at combina-
tion-tone frequencies f3 ¼ jnf1 −mf2j, m, n ∈ N. In our
network model of hearing, this mechanism contributes the
directed links between activated nodes (Supplemental
Material Fig. S3 and Sec. 4 [15]) and dominates the
statistics of the activated nodes. This paradigm contrasts

the superposition model of the classical linear frequency
analyzer cochlea. As another manifestation of the nonlinear
nature of the cochlea, our output threshold criterion
reproduces without any additional modification the
decreased input sensitivity phenomenon towards the fre-
quency edges of the cochlea observed in psychoacoustic
experiments.
Such stimulation-specific activation networks are the

focus of this work. Figure 2 exhibits the activation network
from the input of two complex tones (our complex tones
always consist of five consecutive harmonics, starting with
the fundamental frequency). Activated nodes relate either
to a harmonic of a stimulation or to a combination tone of
already activated nodes; combination tones have a promi-
nent role in human pitch perception [18,19,28,29]. A 0.65-
kHz tone, e.g., is generated as the 2f1 − f2 combination
tone, with f1;2 ¼ f2; 3.35g kHz. Complex activation pat-
terns correspond at the node level to receptive fields that
become increasingly intricate as we move down the cochlea
[Supplemental Material Fig. S1(b) [15]], reflected in ever
more complicated wave forms (Supplemental Material
Fig. S3 [15]). For obtaining activation networks, this
necessitates inferring from the Fourier spectrum of a node’s
signal whether a node is a child or a root (Supplemental
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FIG. 1. Small-signal amplifier characteristics of an isolated
node of the cochlear network [13]. Response vs deviation from
the resonant frequency (a) for different distances from the
bifurcation point (μ ∈ f−0.05;−0.1;−0.2;−0.4;−0.8g) and
(b) for different signal strengths (steps of 10 dB rms with respect
to reference level 1).
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FIG. 2. Response to stimulation by two complex tones [base
frequencies 2 and 3.35 kHz (black arrows), with five harmonics
each, both −60 dB strong). Top panel: Avalanche activation
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Material Sec. 3 [15]). While our cochlea is optimized to
reproduce all salient features of mammalian hearing, this
level of quality is not required. The statistical network
properties that we focus on are robust regarding sensor
variation, as long as combination tones are sufficiently
generated.
We will show that randomly chosen simple inputs

generate power-law activation-network size distributions

PðsÞ ∼ s−α

(where size s is the number of links). This happens
autonomously, without the need for additional conditions,
such as dynamical synapses or excitatory-inhibitory bal-
ance. We will then see how learning drives the network
away from power-law behavior. By the close evolutionary
and functional relationship between sensory and cortical
signal processing [30], our results open up a new perspec-
tive for understanding generic biological signal processing.
On this more general level, our conclusion will be
that power-law avalanche-size distributions characterize a
fundamental ground state of biological information
processing.
The distribution of the activity A along the cochlea

exhibits the complexity of the interaction among the nodes
[computationally, the activation A at node j ∈ f1;…; 29g is
defined as AðjÞ≔ð1=NÞPN

i¼1Θðfi; jÞ, where fi denotes
the ith stimulation, N is the total number of stimulations,
and Θðfi; jÞ is 1 if node j is activated and 0 otherwise].
Single complex sounds of fundamental frequency uni-
formly sampled from a nonlogarithmic, linear (0,15)-kHz
frequency interval generate activities A that still closely
follow the sampling power law (α ¼ −1). Mixtures of two
and three complex sounds, however, generate μ-dependent
power laws A ∝ f− ~α, where 0 < ~α < 1 [see Fig. 3(a)].
Because of combination-tone dependence on the input
level, stimulations were randomly chosen from a
ð−80;−40Þ-dB interval. Regarding the human ear, this
corresponds to low to moderate sound levels of about
30–70 dB SPL [19]. Fixing the sound level at −60 dB
yields identical results. The origin of this behavior is
clarified by the corresponding activation-network size
statistics that share the power-law property (where size s
is defined as the number of activated links). The exponent
and the extension of that power-law regime are governed by
two counteracting mechanisms: the level of nonlinearity
present (μ) and the input sound level. Going to higher
(lower) sound levels or having μ closer (further away) from
bifurcation both drive the distribution away from the
maximal power-law regime. The latter is characterized
by exponents α≃ 1.5, for the standard μ ¼ −0.25 value
and random intermediate sound levels [cf. Fig. 3(b)]. In the
figure, dotted lines of slope−1.5 indicate the regions across
which a power-law test value p > 0.9 holds [31]. The
power-law regime excludes input-specific effects to the left

and finite size effects of the cochlea combined with
stimulation specifics to the right. These results raise the
question whether we deal here with a manifestation of self-
organized branching universality with power-law exponent
α ¼ 3

2
[32,33]. This particularly since our activation net-

works parallel the neuronal avalanches in neocortical
networks [1–3] and because theoretical models of neo-
cortical networks [6–8,12] obtained similar exponents and
have emphasized such a connection. On this background,
relative to the −50-dB activation threshold, our results at
fixed stimulation strengths of −70, −60, and −50 dB could
be interpreted as “underdeveloped,” “fully developed,” and
“overdeveloped,” respectively. In this order, they would
correspond to a transition from subcritical to critical and to
supercritical behavior, respectively. The minor bump
obtained for −60 dB would then indicate a slightly super-
critical behavior or a finite size effect or a combination
of both.
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FIG. 3. Activation power laws. (a) Cumulated activity A from
stimulations by two complex tones of uniformly random input
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Inset: Fixed sound levels (see the text).
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By scale invariance, power-law-distributed avalanches
express a network’s unbiasedness regarding the nature of
the information to be processed. To demonstrate that the
power law is lost when we bias the cochlea towards a
desired sound, we move the Hopf parameters of sections
unrelated to the sound further away from the bifurcation
point, a process that extensive usage seems to be made of in
mammalian auditory scene analysis [16]. Such a tuning is
closely related to learning in neural networks; how learning
affects neocortical activity power laws is a topic of strong
current interest. Already the detuning of two adjacent nodes
generates substantial modifications of the elicited activation
networks. If, for two complex inputs of fundamental
frequencies fð1;2Þ0 ¼ f1.331; 2.120g kHz and five harmon-
ics each (each sound at −70 dB rms), nodes 11 and 12 are
jointly gradually detuned from μ ¼ −0.25 to μ ¼ −1, the
associated activation network shrinks substantially
[Fig. 4(a) and Supplemental Material Video 5 [15]].
During this process, the associated activation-network size
distributions gradually lose their power-law characteristics.
This is demonstrated in Fig. 3(b) for the detuning of two
frequency bands (nodes 15 and 16 and nodes 19–21) from
μ ¼ −0.25 over μ ¼ −1.0 to μ ¼ −2.0. Under this change,
the initial power-law distribution s−1.5 converts gradually
into a strictly convex shape (line L), indicating that learning
generically drives the network away from power-law
criticality. This specific tuning example is generic in the
following sense: Substantially simpler tuning patterns do
not produce a sound targeting effect sufficient to be

qualified as listening, which is coexpressed by the persist-
ence of the power-law nature of PðsÞ. For more information
on modalities and real-world applications of this learning
implementation, readers should consult Ref. [16], from
which our example was selected.
Learningalso affects the “small-worldness”property of our

network. To measure small-worldness [34], we use the indi-
cators γ¼ ðclusterin coefficien of the considered networkÞ=
ðclustering coefficient of the Erdös-Rényi random networkÞ
and λ¼ ðaverage shortest path length of the considered
networkÞ=ðaverage shortest path length of the Erdös-Rényi
random networkÞ. A network is small world if its small-
worldness ~S≔γ=λ exceeds unity. For flat tuning, we typically
have ~S≃ 1.7 [cf. Fig. 4(c)]. Upon the tuning that changes the
activation network as in Fig. 4(a), this value consistently
drops; i.e., tuning works against small-worldness.
There is an information-dynamics argument as to why

nature might choose power-law distributions. A system’s
ground state must lack bias towards a particular signal and
provide the basis for the system’s ability to quickly adapt to
new requirements (inputs and tasks) and yet maintain past
information for all signals similarly. A natural description
framework of these properties is within the thermodynamic
formalism [35–38]. Focusing on exponential scaling in
time n, of probability (fractal dimensions) or of support
(Lyapunov exponents), e.g., systems are described by a free
energy FðβÞ ¼ limn→∞ð1=nÞ logZnðβÞ (where Zn is usu-
ally a sum of Boltzmann contributions) or by the associated
entropy function SðεÞ ¼ βεþ FðβÞ, obtained from FðβÞ by
a Legendre transform. The probability of observing a value
of an observable ε then scales as [36]

Pðε; nÞdε ∼ e−n½ε−SðεÞ�dε;

taking logarithms, we obtain in the thermodynamic limit
ε ¼ SðεÞ. While “normally behaved” systems have one
“observable invariant measure,” our power-law-distributed
invariant density measures admit a continuum of observable
invariant measures [39] (interpretable as a phase transition).
This provides a link to our experimentally observed power-
law distributions: Starting from a computational ground
state (power-law characteristics and correlations that decay
slower than exponentially), learning forces the system to
focus on a particular measure, which destroys the power
law (Fig. 5). Whereas in the ground state the prediction of
the evolution of the system is extremely difficult, for the
tuned system this is much simpler [39], which is coex-
pressed by an increased computation (measured as the
reduction of the complexity of prediction of the system
[40]) after learning. Since the specific heat diverges
(½ðd2SðεÞ=dε2Þ ¼ 0� and there is no latent heat trace, the
ground-state system would indeed be at the critical point.
Away from the thermodynamic limit, i.e., for real-world
systems, generalized space constraints generically generate
power-law deviations that in the thermodynamic limit
vanish in a well-controlled manner [41].
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FIG. 4. Effect of tuning on activation networks. (a) Unbiased
(blue) vs tuned (red) cochlea. The red graph is a subgraph of the
blue graph. (b) Network characteristics edge number n1 and node
number n2, as a function of the detuning of μ11;12. (c) Small-
worldness ~S as a function of the number of nodes.
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Our approach opens many opportunities to connect with
psychophysics and electrophysiology. An example fully in
line with our interpretation is anesthesia (known to produce
functional disconnection in the posterior complex, causing
loss of information capacity by interrupting cortical
communication [42]), which pulls the dynamics away from
the pre-anesthesia power law [43].
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