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We report the experimental observation of Snell’s law for magnetostatic spin waves in thin ferromagnetic
Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the
interface between two media with different dispersion relations. Since the dispersion relation for
magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell’s
law known in optics are observed for incidence angles larger than 25° with respect to the interface normal
between the two magnetic media. Furthermore, we can show that the thickness step modifies the
wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering
for magnonic applications.
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Snell’s law describes the refraction of waves at the
transition between two media with different indices of
refraction. In optics, the dispersion relation of light is
isotropic, and thus, the relation between the incident and
refracted angles is solely determined by the ratio of the
refractive indices. In contrast, for spin waves in thin films
with in-plane magnetization the dispersion relation is
inherently anisotropic, and thus, deviations from Snell’s
law in optics are expected [1–6] but have not been reported
directly so far.
In the emerging field of magnonics, it is foreseen that

spin waves can be used as carriers transmitting information
from one medium to another. Thus, it is important to study
their refraction and reflection at the interface between two
magnetic media. Furthermore, their efficient manipulation
and steering is one of the fundamental problems that needs
to be solved before spin waves or magnons can be used in
magnonic devices [7,8]. Attempts in steering range from
using artificially designed magnonic crystals [9–11] to spin
wave guiding in nanostructures [12,13].
Most magnonic devices realized so far are rather large

[14], although they could potentially be scaled down to the
nanometer range. One reason is that spin waves are
typically generated by lithographically defined microwave
antennas that limit the experimentally accessible wave-
lengths to a few hundred nanometers. There is major
interest in overcoming this limit, and different schemes
have been proposed [15,16].
In the experiments presented here, we use Snell’s law for

spin waves in the dipolar regime as an efficient means of
spin wave steering and as a way to reach lower

wavelengths. We use a thickness step to realize the
transition between two magnetic media with different
dispersion relations for propagating spin waves. Spin
waves are excited in a thick Permalloy film and sub-
sequently propagate into a film with lower thickness, see
Fig. 1(a). This idea [17] has only recently been put into the
context of magnonics [18,19]. We show refraction and
reflection of the waves and find deviations from Snell’s law
in optics for incidence angles larger than 25° with respect
to the interface normal. Furthermore, we can show,
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FIG. 1. (a) Sketch of the sample with the z axis not drawn to
scale. The red arrow indicates the direction of the externally
applied magnetic field which is aligned parallel to the coplanar
wave guide (yellow). The latter is used to excite spin waves which
propagate perpendicular to it. (b) Top view of (a) with exemplary
data acquired by TRMOKE. The green arrows show the wave
vectors k1, k2, and k3 relevant for the analysis. φ1−3 denote the
angles of the wave vectors with respect to the external field, while
θ1−3 denote the angles with respect to the interface normal. The
indices 1–3 correspond to the incident, refracted, and reflected
wave, respectively.
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experimentally, that the spin wave amplitudes are enhanced
in the vicinity of the transition region counteracting losses
on length scales of a few micrometers.
To explain our findings, we have to incorporate the

anisotropic dispersion relation for spin waves in thin films
into Snell’s law. First, let us consider the case of a dipolar
spin wave impinging onto an arbitrary interface between
two isotropic magnetic media. The continuity of the
tangential component of the wave vector k of any wave
when experiencing reflection or when being transmitted to
a different medium can be regarded as Snell’s law [20–22],
namely

sinðθ1Þ ¼
k2;3
k1

sinðθ2;3Þ; ð1Þ

with θi the angles with respect to the interface normal. The
indices 1–3 denote incoming, refracted, and reflected
waves, compare Fig. 1(b). In optics, this reduces to the
well known Snell’s law for refracted waves, where k1;2 can
be substituted by the respective refractive indices due to
isotropic and linear dispersion relations in most materials.
For the same reasons, it simply follows θ1 ¼ θ3 for a
reflected wave since it remains in the same medium.

In contrast, the wave vector of spin waves in thin films
depends on the angle φ between the propagation direction
with respect to the direction of the externally applied field
H. This follows directly from the dispersion relation [23]
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with ω the angular frequency of the wave, γ the gyro-
magnetic ratio, M the saturation magnetization, d the
thickness of the film, μ0 the vacuum permeability, and J ¼
ð2A=μ0MÞ with the exchange stiffness constant A. For the
wave propagation discussed experimentally in this Letter, it
is safe to neglect exchange interactions (i.e., A ¼ 0), since
we are limited to rather small wave vectors around
k ¼ 1 μm−1. In this range of k, the propagation is mainly
governed by the dynamic dipolar forces originating from
the precessing magnetization [23].
φ2 can be identified as ðφ1 þ θ2 − θ1Þ [see Fig. 1(b)],

and Eq. (2) can be rewritten in the following form:
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�
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This expression for the k vector can be inserted into
Eq. (1) to obtain Snell’s law for spin waves. Besides the
known material and experimental parameters, the resulting
implicit equation only depends on θ1 and θ2 and can,
therefore, be used to predict refraction angles for spin
waves. Similarly, the angle of reflection can be determined
by identifying φ3 ¼ 180° − ðφ1 þ θ3 þ θ1Þ. Feeding the
calculated angles back into Eq. (3) allows calculating the
wave vector amplitudes. The formalism is not limited to our
experiments; it can also be used for interfaces consisting of
different magnetic materials.
In the trivial case of spin waves impinging at normal

incidence, i.e., φ1 ¼ φ2 ¼ 90°, onto a step interface
between two media with thicknesses di, it is straightfor-
ward to define an angle-independent relative refractive
index: Since k ∝ ð1=dÞ, ðk2=k1Þ in Eq. (1) reduces to
ðd1=d2Þ ¼ c. In the experimental case discussed below,
c ¼ 2. This case corresponds to Snell’s law in optics.
Experimentally, we use time resolved scanning Kerr

microscopy (TRMOKE) and microfocused Brillouin light
scattering (μ-BLS) to verify Snell’s law for spin waves.
For the TRMOKE experiments, an 800 nm wavelength

Ti:Sapphire laser is focused to a spot of 450 nm at normal
incidence onto the sample. Upon reflection, the rotation of
the polarization vector of the incident light is detected

which is directly proportional to the out-of-plane compo-
nent of the magnetization. In order to reach time resolution,
the laser pulses are phase locked to the microwave
excitation frequency.
Using an x-, y-, z-piezo stage, the sample can be scanned

enabling direct access to the characteristics of the spin
waves, namely wave vector, phase, and relative amplitude.
Simultaneously, the reflectivity of the sample is recorded
which is used to identify the thick and thin parts of the
sample. Typical dimensions of the images are 40 × 40 μm.
We use a step size of 300 nm.
μ-BLS measurements are performed by focusing about

5 mWof monochromatic light from a diode-pumped-solid-
state laser operating at 532 nm onto the sample. All features
of the experimental apparatus are described in detail
elsewhere [24]. Conventional BLS measurements are only
sensitive to the spin wave intensity, not to its phase. In order
to measure the propagation direction of spin waves, it is
necessary to extract the required phase information. This
can be realized with the so-called phase-sensitive micro-
focused BLS which relies on the interference between the
inelastically scattered light and a reference beam of con-
stant phase [25]. Two-dimensional μ-BLS maps are
acquired by scanning the laser spot over an area of about
2.5 × 2.5 μm2 with 250 nm step size [26].
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By sputter deposition and standard lithography tech-
niques, we fabricate a 100 μmwide ferromagnetic thin film
sample out of Permalloy which features a well-defined
thickness step ofΔz ¼ 30 nm, see Fig. 1(a). Spin waves are
excited in the 60 nm thick part by a shorted coplanar wave
guide (CPW) deposited on top of the films. The spin waves
then propagate away from the CPW in the Damon-Eshbach
geometry, i.e., with k vector ~k1 perpendicular to the
direction of both the CPW and the applied magnetic field.
At some distance from the CPW, the spin waves reach a
thickness step and are refracted into a medium with lower
thickness, in the present case, 30 nm. In thin films, a change
in the thickness of the magnetic material causes a drastic
change of the dispersion relation which is, therefore, used in
the experiments to model a transition to a different medium.
In fact, in Fig. 1(b), we can clearly observe a refracted wave
with altered k vector ~k2. Similarly, a reflected wave can also
be observed in the upper part of the thick region. The angle
and k-vector definitions are drawn on top of the exper-
imental data obtained by TRMOKE.
In total, twelve different samples with varying angles of

incidence θ1 between 0° and 60° in steps of 5°weremeasured
at a fixed excitation frequency of ω ¼ 2π × 8 GHz in
TRMOKE experiments and ω ¼ 2π × 8.1 GHz in μ-BLS
experiments. Examples of the rawTRMOKEdata are shown
in Figs. 2(a) and 2(b). In the data, we notice the incoming
wave in medium 1 (left of the grey line) and the refracted
wave in medium 2 (right of the grey line). When closely
analyzing the dynamic magnetic contrast in medium 1, a
reflected wave can also be observed. To emphasize the
reflected waves, we show line scans along thewave fronts of
the incomingwaves in Figs. 2(e) and 2(f). The crest (trough)
of the incoming wave leads to a positive (negative) offset in
the Kerr signal.
As can be clearly seen in the images, the k vector of the

spin waves is significantly enhanced behind the thickness
step. This means that the natural limit for short wave length
spin wave generation given by the geometrical constraint of
the CPW can be elegantly overcome.
Furthermore, near the interface, the signal in the thin part

of the Permalloy film is substantially larger than in the thick
part. This is counter-intuitive at first, since the refracted
wave is induced by the incoming wave. However, the
combined action of exchange and dipolar interaction leads
to an increased excursion angle. To avoid dynamic mag-
netic charges, purely dipolar coupling would lead to a
doubling of the excursion angle (since the thickness ratio of
the two media is 2∶1). At the same time, exchange prefers
reducing the tilt angle between the precessing magnetic
moments in both media. As a result, the Kerr signal
increases by a factor of slightly less than 2. Also, note
that an increased in-plane shape anisotropy might contrib-
ute to the deviation from the factor of 2. The enhancement
of the amplitude is an important point and means that we
can, in fact, boost the signal some distance from the

excitation, thus, counteracting natural attenuation by damp-
ing. This is a local effect, since the attenuation length in the
thin part becomes shorter mainly due to the reduction of
the group velocity that scales linearly with thickness. The
attenuation length is further reduced since the k vector
increases and since the propagation direction tilts away
from the Damon Eshbach geometry [29]. However, a net
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FIG. 2. Experimental results for two samples. In (a), the incoming
wave has an angle of θ1 ¼ 20° with respect to the interface normal,
and in (b), the angle is θ1 ¼ 40°. (c) and (d) show the corresponding
planewave fits. The x and y axes give the dimensions of the images
while the color code provides a scale for the dynamicmagnetization
component in arbitrary units. The gray line marks the step between
thick (on the left) and thin (on the right) Permalloy films and the
white boxes indicate the area of the fit. The images are recorded at a
fixed frequency ofω ¼ 2π × 8 GHzand an external field ofμ0H ¼
54 mT along thewave fronts of the incomingwave. The color scale
is cropped in order to enhance the contrast in the areas with lower
signal. To emphasize the reflectedwaves, (e) and (f) show line scans
along the blue lines in (a) and (b). The blue dots are interpolated
from the data; the red lines are fits extracted from (c) and (d), see
main text. “Distance” indicates the distance from the lower left to
the upper right of the blue lines.
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boost of the signal is clearly seen some micrometers from
the interface.
To further analyze the experiments, we fit the data in the

thin part to a 2D plane wave for the refracted waves to
obtain the quantities of interest, namely wave vector
amplitudes k2 and the angles of refraction θ2.
Additionally, amplitude, phase, and attenuation length
are included in this model. The thick part is fitted with a
superposition of incoming and reflected wave yielding k3
and θ3. The fits are displayed in Figs. 2(c) and 2(d).
The results are also used to characterize the sample, as
described in the Supplemental Material [26].
For the fitting procedure, we avoid regions where the

wave is disturbed by sample defects or where additional
reflected waves or static demagnetizing effects near the
edges of the Permalloy film alter the plane wave. This is
especially important near the interface: Since components
of the external magnetic field point along the interface
normal, demagnetizing effects arise in the thick as well as
in the thin region near the thickness step. We expect a
decrease (increase) of the effective field in the thick (thin)
film, as well as a tilt of the static magnetization away from
the direction of the external field. Both contributions have
been quantified by micromagnetic simulations [26]. Based
on this analysis, we choose the regions for fitting where the
waves can be regarded as plane waves. More importantly,
Snell’s law, which we probe in these experiments, should
still hold due to the translational symmetry along the edge.
The results extracted from the data are presented in

Fig. 3. They are compared to the expectations for Snell’s
law in optics (orange lines), i.e., for a wave propagating in
an isotropic medium. A significant deviation from Snell’s
law in optics is observed for incidence angles θ1 > 25° in
the case of refraction and θ1 > 10° in the case of reflection.
One of the important results that we conclude from our
experiments is that the wave vector can be very efficiently
enhanced for incidence angles θ1 > 25°. We observe that,
while the refracted angle starts decreasing again for
θ1 > 40°, k2 keeps increasing due to the anisotropic
dispersion relation (in the case of reflection, a decrease
is observed for θ1 > 25°). Essentially, to match the con-
dition of Snell’s law and the dispersion relation at the same
time, the k vector needs to increase considerably for dipolar
spin waves: on an isofrequency curve, Damon Eshbach
spin waves have the lowest k vector. This allows reducing
the magnon wavelength efficiently. In contrast, in an
isotropic system—where the wave vector is solely deter-
mined by the refractive index which is generally not angle
dependent—it would stay constant.
One should note that the results depend crucially on the

orientation of the external magnetic field (which is aligned
parallel to the antenna in all measurements) while its
magnitude is negligible for the angular dependence of
the refracted wave. In contrast, the wave vector amplitude is
influenced substantially by the magnitude of the external

field. This can be observed in Figs. 3(a) and 3(b). In the
μ-BLS experiments, we use μ0H ¼ 41 mT as external
magnetic field at a frequency of 8.1 GHz, while in
TRMOKE, we use μ0H ¼ 54 mT at a frequency of
8.0 GHz. Since increasing the external magnetic field
shifts the dispersion relation upwards, we detect a k vector
smaller by about a factor of 2 in the TRMOKE experiments
(the slight frequency difference is negligible). Note that,
surprisingly, the refracted angles remain unaffected.
We conclude that Snell’s law for spin waves in the dipolar

regime can be predicted with high accuracy. Our experi-
ments can be fully reproduced by incorporating the aniso-
tropic dispersion relation. We observe efficient spin wave
steering due to the step interface while at the same time the
wave length of the spin waves can be reduced. In the vicinity
of the interface, a signal boost is observed thatwe attribute to
dynamic dipolar coupling. Our findings should be important
in the field of magnonics where efficient spin wave steering
remains a serious problem to be solved. For example, it can
be envisaged that a series of stepped interfaces results in an
increased refracted anglewhile, at the same time, short wave
length spin waves can be generated. Note that Snell’s law, in
the form presented here, should also hold for heterointer-
faces composed of different magnetic materials. In this case,
the material parameters (e.g., saturation magnetization and

(a) (b)

(c) (d)

FIG. 3. (a) Refracted angle θ2, (b) refracted wave vector k2,
(c) reflected angle θ3, and (d) reflected wave vector k3, all shown
versus incident angle θ1. In all graphs, the blue dots are
experimental values measured with TRMOKE, while red dots
are measured with μ-BLS. The orange line shows Snell’s law for
an isotropic dispersion relation, and the green and purple curves
show Snell’s law for spin waves. The latter are calculated with the
help of the anisotropic dispersion relation, Eq. (2), reflecting the
different experimental conditions: The μ-BLS data are measured
at an external field of μ0H ¼ 41 mT and an excitation frequency
of 8.1 GHz, while TRMOKE data were recorded at an external
field of μ0H ¼ 54 mT and an excitation frequency of 8.0 GHz.
The purple curve is not shown in (a), since it overlaps with the
green curve. The errors are the result from least square fitting.
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gyromagnetic ratio) of the different regions have to be
inserted in Eq. (3).
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